Skip to main content
Log in

Enhanced d-ribose biosynthesis in batch culture of a transketolase-deficient Bacillus subtilis strain by citrate

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

In this study, the effects of citrate addition on d-ribose production were investigated in batch culture of a transketolase-deficient strain, Bacillus subtilis EC2, in shake flasks and bioreactors. Batch cultures in shake flasks and a 5-l reactor indicated that supplementation with 0.2–0.5 g l−1 of citrate enhanced d-ribose production. When B. subtilis EC2 was cultivated in a 15-l reactor in a complex medium, the d-ribose concentration was 70.9 g l−1 with a ribose yield of 0.497 mol mol−1. When this strain was grown in the same medium supplemented with 0.3 g l−1 of citrate, 83.4 g l−1 of d-ribose were obtained, and the ribose yield was increased to 0.587 mol mol−1. Addition of citrate reduced the activities of pyruvate kinase and phosphofructokinase, while it increased those of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase. Metabolic flux distribution in the stationary phase indicated that citrate addition resulted in increased fluxes in the pentose phosphate pathway and TCA cycle, and decreased fluxes in the glycolysis and acetate pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Babul J (1978) Phosphofructokinases from Escherichia coli. Purification and characterization of the nonallosteric isozyme. J Biol Chem 253:4350–4355

    PubMed  CAS  Google Scholar 

  2. Bergmeyer HU (1983) Methods of enzymatic analysis, vol 3. Verlag Chemie, Berlin

    Google Scholar 

  3. Blangy D, Buc H, Monod J (1968) Kinetics of the allosteric interactions of phosphofructokinase from Escherichia coli. J Mol Biol 31:13–35. doi:10.1016/0022-2836(68)90051-X

    Article  PubMed  CAS  Google Scholar 

  4. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  PubMed  CAS  Google Scholar 

  5. Chen SX, Chu J, Zhuang YP, Zhang SL (2005) Enhancement of inosine production by Bacillus subtilis through suppression of carbon overflow by sodium citrate. Biotechnol Lett 27:689–692. doi:10.1007/s10529-005-4686-1

    Article  PubMed  CAS  Google Scholar 

  6. Dauner M, Sauer U (2001) Stoichiometric growth model for riboflavin-producing Bacillus subtilis. Biotechnol Bioeng 76:132–143. doi:10.1002/bit.1153

    Article  PubMed  CAS  Google Scholar 

  7. De Wulf P, Soetaert W, Schwengers D, Vandamme EJ (1996) d-glucose does not catabolite repress a transketolase-deficient d-ribose-producing Bacillus subtilis mutant strain. J Ind Microbiol 17:104–109. doi:10.1007/BF01570052

    Article  Google Scholar 

  8. De Wulf P, Soetaert W, Schwengers D, Vandamme EJ (1996) Screening and mutational improvement of a d-ribose secreting Candida pelliculosa strain. J Ferment Bioeng 82:1–7. doi:10.1016/0922-338X(96)89446-3

    Article  Google Scholar 

  9. De Wulf P, Vandamme EJ (1997) Production of d-ribose by fermentation. Appl Microbiol Biotechnol 48:141–148. doi:10.1007/s002530051029

    Article  PubMed  Google Scholar 

  10. De Wulf P, Soetaert W, Schwengers D, Vandamme EJ (1997) Optimization of d-ribose production with a transketolase-affected Bacillus subtilis mutant strain in glucose and gluconic acid-based media. J Appl Microbiol 83:25–30. doi:10.1046/j.1365-2672.1997.00161.x

    Article  Google Scholar 

  11. Diesterhaft MD, Freese E (1973) Role of pyruvate carboxylase, phosphoenolpyruvate carboxykinase, and malic enzyme during growth and sporulation of Bacillus subtilis. J Biol Chem 248:6062–6070

    PubMed  CAS  Google Scholar 

  12. Dittrich CR, Bennett GN, San KY (2005) Characterization of the acetate-producing pathways in Escherichia coli. Biotechnol Prog 21:1062–1067. doi:10.1021/bp050073s

    Article  PubMed  CAS  Google Scholar 

  13. Evans PR, Hudson PJ (1979) Structure and control of phosphofructokinase from Bacillus stearothermophilus. Nature 279:500–504. doi:10.1038/279500a0

    Article  PubMed  CAS  Google Scholar 

  14. Evans PR, Farrants GW, Hudson PJ (1981) Phosphofructokinase: structure and control. Philos Trans R Soc Lond B Biol Sci 293:53–62. doi:10.1098/rstb.1981.0059

    Article  PubMed  CAS  Google Scholar 

  15. Goel A, Lee J, Domach MM, Ataai MM (1995) Suppressed acid formation by cofeeding of glucose and citrate in Bacillus culture: emergence of pyruvate kinase as a potential metabolic engineering site. Biotechnol Prog 11:380–385. doi:10.1021/bp00034a003

    Article  PubMed  CAS  Google Scholar 

  16. Goel A, Lee J, Domach MM, Ataai MM (1999) Metabolic fluxes, pools and enzyme measurements suggest a tighter coupling of energetics and biosynthetic reactions associated with reduced pyruvate kinase flux. Biotechnol Bioeng 64:129–134. doi:10.1002/(SICI)1097-0290(19990720)64:2<129::AIDBIT1>3.0.CO;2-I

    Article  PubMed  CAS  Google Scholar 

  17. Habison A, Kubicek CP, Röhr M (1983) Partial purification and regulatory properties of phosphofructokinase from Aspergillus niger. Biochem J 209:669–676. doi:0306-3275/83/030669-08$2.00

    PubMed  CAS  Google Scholar 

  18. Han K, Lim HC, Hong J (1991) Acetate acid formation in Escherichia coli fermentation. Biotechnol Bioeng 39:663–671. doi:10.1002/bit.260390611

    Article  Google Scholar 

  19. Han L, Doverskog M, Enfors SO, Häggström L (2002) Effect of glycine on the cell yield and growth rate of Escherichia coli: evidence for cell-density-dependent glycine degradation as determined by 13C NMR spectroscopy. J Biotechnol 92:237–249. doi:10.1016/S0168-1656(01)00373-X

    Article  PubMed  CAS  Google Scholar 

  20. Kachmar JF, Boyer PD (1953) Kinetic analysis of enzyme reactions II. The potassium activation and calcium inhibition of pyruvic phosphoferase. J Biol Chem 200:669–682

    PubMed  CAS  Google Scholar 

  21. Kemp RG, Foe LG (1983) Allosteric regulatory properties of muscle phosphofructokinase. Mol Cell Biochem 57:147–154. doi:10.1007/BF00223529

    Article  PubMed  CAS  Google Scholar 

  22. Kishimoto K, Kintaka K, Uchiyama N (1990) Production of d-ribose. US patent 4904587

  23. Krom BP, Warner JB, Konings WN, Lolkema JS (2000) Complementary metal ion specificity of the metal-citrate transporters CitM and CitH of Bacillus subtilis. J Bacteriol 182:6374–6381. doi:0021-9193/00/$04.00+0

    Article  PubMed  CAS  Google Scholar 

  24. Lee YN, Lessie TG (1974) Purification and characterization of the two 6-phosphogluconate dehydrogenase species from Psedomonas multivorans. J Bacteriol 120:1043–1057

    PubMed  CAS  Google Scholar 

  25. Li H, Pajor AM (2002) Functional characterization of CitM, the Mg2+-citrate transporter. J Membr Biol 185:9–16. doi:10.1007/s00232-001-0106-1

    Article  PubMed  CAS  Google Scholar 

  26. Miyagawa K, Miyazaki J, Kanzaki N (1992) Method of producing d-ribose. European patent 0501765 A1

  27. Newsholme EA, Sugden PH, Williams T (1977) Effect of citrate on the activities of 6-phosphofructokinase from nervous and muscle tissues from different animals and its relationship to the regulation of glycolysis. Biochem J 166:123–129

    PubMed  CAS  Google Scholar 

  28. Park YC, Kim SG, Park K, Lee KH, Seo JH (2004) Fed-batch production of d-ribose from sugar mixtures by transketolase-deficient Bacillus subtilis SPK1. Appl Microbiol Biotechnol 66:297–302. doi:10.1007/s00253-004-1678-3

    Article  PubMed  CAS  Google Scholar 

  29. Park YC, Choi JH, Bennett GN, Seo JH (2006) Characterization of d-ribose biosynthesis in Bacillus subtilis JY200 deficient in transketolase gene. J Biotechnol 121:508–516. doi:10.1016/j.jbiotec.2005.08.003

    Article  PubMed  CAS  Google Scholar 

  30. Peng L, Shimizu K (2003) Global metabolic regulation analysis for Escherichia coli K12 based on protein expression by 2-dimensional electrophoresis and enzyme activity measurement. Appl Microbiol Biotechnol 61:163–178. doi:10.1007/s00253-002-1202-6

    PubMed  CAS  Google Scholar 

  31. Peng Y, Wu Z, Li Y (2002) A method for the determination of d-ribose concentration in microbial fermented broth by spectrophotometry. Chin J Anal Chem 30:975-977. doi: 10.3321/j.issn:0253-3820.2002.08.020

    Google Scholar 

  32. Sasajima K, Yoneda M (1971) Carbohydrate metabolism-muntants of a Bacillus species. Part II. d-ribose accumulation by pentose phosphate pathway mutant. Agric Biol Chem 35:509–517

    CAS  Google Scholar 

  33. Sasajima K, Yoneda M (1989) Production of d-ribose by microorganism. In: Vandamme EJ (ed) Biotechnology of vitamin, pigments and growth factors. Elsevier Science Publishing Co., New York, pp 167–197

    Google Scholar 

  34. Srivastava RK, Wangikar PP (2008) Combined effects of carbon, nitrogen and phosphorus substrates on d-ribose production via transketolase deficient strain of Bacillus pumilus. J Chem Technol Biotechnol 83:1110–1119. doi:10.1002/jctb.1936

    Article  CAS  Google Scholar 

  35. Suárez DC, Liria CW, Kilikian BV (1998) Effect of yeast extract on Escherichia coli growth and acetic acid production. World J Microbiol Biotechnol 14:331–335. doi:10.1023/A:1008800908696

    Article  Google Scholar 

  36. Wood WA (1982) Methods in enzymology. Academic Press, New York

    Google Scholar 

Download references

Acknowledgment

This work was partly supported by the Project of Shanghai Leading Academic Disciplines, no. B505.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Ye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, L., Li, Z. & Ye, Q. Enhanced d-ribose biosynthesis in batch culture of a transketolase-deficient Bacillus subtilis strain by citrate. J Ind Microbiol Biotechnol 36, 1289–1296 (2009). https://doi.org/10.1007/s10295-009-0612-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-009-0612-1

Keywords

Navigation