Advertisement

Journal of Industrial Microbiology & Biotechnology

, Volume 36, Issue 9, pp 1127–1138 | Cite as

Problems with the microbial production of butanol

  • Yan-Ning Zheng
  • Liang-Zhi Li
  • Mo XianEmail author
  • Yu-Jiu Ma
  • Jian-Ming Yang
  • Xin Xu
  • Dong-Zhi He
Review

Abstract

With the incessant fluctuations in oil prices and increasing stress from environmental pollution, renewed attention is being paid to the microbial production of biofuels from renewable sources. As a gasoline substitute, butanol has advantages over traditional fuel ethanol in terms of energy density and hygroscopicity. A variety of cheap substrates have been successfully applied in the production of biobutanol, highlighting the commercial potential of biobutanol development. In this review, in order to better understand the process of acetone–butanol–ethanol production, traditional clostridia fermentation is discussed. Sporulation is probably induced by solvent formation, and the molecular mechanism leading to the initiation of sporulation and solventogenesis is also investigated. Different strategies are employed in the metabolic engineering of clostridia that aim to enhancing solvent production, improve selectivity for butanol production, and increase the tolerance of clostridia to solvents. However, it will be hard to make breakthroughs in the metabolic engineering of clostridia for butanol production without gaining a deeper understanding of the genetic background of clostridia and developing more efficient genetic tools for clostridia. Therefore, increasing attention has been paid to the metabolic engineering of E. coli for butanol production. The importation and expression of a non-clostridial butanol-producing pathway in E. coli is probably the most promising strategy for butanol biosynthesis. Due to the lower butanol titers in the fermentation broth, simultaneous fermentation and product removal techniques have been developed to reduce the cost of butanol recovery. Gas stripping is the best technique for butanol recovery found so far.

Keywords

Butanol Fermentation Metabolic engineering Clostridia E. coli Recovery techniques 

Notes

Acknowledgments

We would like to acknowledge the financial support of the CAS 100 Talents Program (No. KGCXZ-YW-801).

References

  1. 1.
    Atsumi S, Cann AF, Connor MR, Shen CR, Smith KM, Brynildsen MP, Chou KJ, Hanai T, Liao JC (2007) Metabolic engineering of Escherichia coli for 1-butanol production. Metab Eng 10:305–311PubMedCrossRefGoogle Scholar
  2. 2.
    Atsumi S, Hanai T, Liao JC (2008) Non-fermentative pathways for synthesis of branched- chain higher alcohols as biofuels. Nature 451:86–89PubMedCrossRefGoogle Scholar
  3. 3.
    Bennett GN, Rudolph FB (1995) The central metabolic pathway from acetyl-CoA to butyryl-CoA in Clostridium acetobutylicum. FEMS Microbiol Rev 17:241–249CrossRefGoogle Scholar
  4. 4.
    Borden JR, Papoutsakis ET (2007) Dynamics of genomic-library enrichment and identification of solvent tolerance genes for Clostridium acetobutylicum. Appl Environ Microbiol 73:3061–3068PubMedCrossRefGoogle Scholar
  5. 5.
    Boynton ZL, Bennett GN, Rudolph FB (1996) Cloning, sequencing, and expression of clustered genes encoding β-hydroxybutyryl-coenzyme A (CoA) dehydrogenase, crotonase, and butyryl-CoA dehydrogenase from Clostridium acetobutylicum ATCC 824. J Bacteriol 178:3015–3024PubMedGoogle Scholar
  6. 6.
    Bryant DL, Blaschek HP (1988) Buffering as a means for increasing growth and butanol production by Clostridium acetobutylicum. J Ind Microbiol 3:49–55CrossRefGoogle Scholar
  7. 7.
    Chen CK, Blaschek HP (1999) Acetate enhances solvent production and prevents degeneration in Clostridium beijerinckii BA101. Appl Microbiol Biotechnol 52:170–173PubMedCrossRefGoogle Scholar
  8. 8.
    Dabrock B, Bahl H, Gottschalk G (1992) Parameters affecting solvent production by Clostridium pasteurianum. Appl Environ Microbiol 58:1233–1239PubMedGoogle Scholar
  9. 9.
    Desai RP, Papoutsakis ET (1999) Antisense RNA strategies for metabolic engineering of Clostridium acetobutylicum. Appl Environ Microbiol 65:936–945PubMedGoogle Scholar
  10. 10.
    Dürre P (2007) Biobutanol: an attractive biofuel. Biotechnol J 2:1525–1534PubMedCrossRefGoogle Scholar
  11. 11.
    Dürre P, Böhringer M, Nakottel S, Schaffer S, Thormann K, Zickner B (2002) Transcriptional regulation of solventogenesis in Clostridium acetobutylicum. J Mol Microbiol Biotechnol 4:295–300PubMedGoogle Scholar
  12. 12.
    Dürre P, Hollergschwandner C (2004) Initiation of endospore formation in Clostridium acetobutylicum. Anaerobe 10:69–74PubMedCrossRefGoogle Scholar
  13. 13.
    Evans PJ, Wang HY (1988) Enhancement of butanol formation by Clostridium acetobutylicum in the presence of decanol-oleyl alcohol mixed extractants. Appl Environ Microbiol 54:1662–1667PubMedGoogle Scholar
  14. 14.
    Ezeji TC, Karcher PM, Qureshi N, Blaschek HP (2005) Improving performance of a gas stripping-based recovery system to remove butanol from Clostridium beijerinckii fermentation. Bioprocess Biosyst Eng 27:207–214PubMedCrossRefGoogle Scholar
  15. 15.
    Ezeji TC, Qureshi N, Blaschek HP (2003) Production of acetone, butanol and ethanol by Clostridium beijerinckii BA101 and in situ recovery by gas stripping. World J Microbiol Biotechnol 19:595–603CrossRefGoogle Scholar
  16. 16.
    Ezeji TC, Qureshi N, Blaschek HP (2004) Acetone butanol ethanol (ABE) production from concentrated substrate: reduction in substrate inhibition by fed-batch technique and product inhibition by gas stripping. Appl Microbiol Biotechnol 63:653–658PubMedCrossRefGoogle Scholar
  17. 17.
    Ezeji TC, Qureshi N, Blaschek HP (2005) Continuous butanol fermentation and feed starch retrogradation: butanol fermentation sustainability using Clostridium beijerinckii BA101. J Biotechnol 115:179–187PubMedCrossRefGoogle Scholar
  18. 18.
    Ezeji TC, Qureshi N, Blaschek HP (2007) Bioproduction of butanol from biomass: from genes to bioreactors. Curr Opin Biotechnol 18:220–227PubMedCrossRefGoogle Scholar
  19. 19.
    Ezeji TC, Qureshi N, Blaschek HP (2007) Production of acetone butanol (AB) from liquefied corn starch, a commercial substrate, using Clostridium beijerinckii coupled with product recovery by gas stripping. J Ind Microbiol Biotechnol 34:771–777PubMedCrossRefGoogle Scholar
  20. 20.
    Feustel L, Nakotte S, Dürre P (2004) Characterization and development of two reporter gene systems for Clostridium acetobutylicum. Appl Environ Microbiol 70:798–803PubMedCrossRefGoogle Scholar
  21. 21.
    Garcia A, Lannotti EL, Fischer JL (1986) Butanol fermentation liquor production and separation by reverse osmosis. Biotechnol Bioeng 28:785–791PubMedCrossRefGoogle Scholar
  22. 22.
    Girbal L, Mortier-Barriére I, Raynaud F, Rouanet C, Croux C, Soucaille P (2003) Development of a sensitive gene expression reporter system and an inducible promoter–repressor system for Clostridium acetobutylicum. Appl Environ Microbiol 69:4985–4988Google Scholar
  23. 23.
    Glieder A, Farinas ET, Arnold FH (2002) Laboratory evolution of a soluble, self-sufficient, highly active alkane hydroxylase. Nat Biotechnol 20:1135–1139Google Scholar
  24. 24.
    Green EM, Bennett GN (1996) Inactivation of an aldehyde/alcohol dehydrogenase gene from Clostridium acetobutylicum ATCC824. Appl Biochem Biotechnol 57–58:213–221PubMedCrossRefGoogle Scholar
  25. 25.
    Green EM, Boynton ZL, Harris LM, Rudolph FB, Papoutsakis ET, Bennett GN (1996) Genetic manipulation of acid formation pathways by gene inactivation in Clostridium acetobutylicum ATCC 824. Microbiology 142:2079–2086PubMedCrossRefGoogle Scholar
  26. 26.
    Harris LM, Blank L, Desai RP, Welker NE, Papoutsakis ET (2001) Fermentation characterization and flux analysis of recombinant strains of Clostridium acetobutylicum with an inactivated solR gene. J Ind Microbiol Biotechnol 27:322–328PubMedCrossRefGoogle Scholar
  27. 27.
    Harris LM, Welker NE, Papoutsakis ET (2002) Northern, morphological, and fermentation analysis of spo0A inactivation and overexpression in Clostridium acetobutylicum ATCC824. J Bacteriol 184:3586–3597PubMedCrossRefGoogle Scholar
  28. 28.
    Heap JT, Pennington OJ, Cartman ST, Carter GP, Minton NP (2007) The ClosTron: a universal gene knock-out system for the genus Clostridium. J Microbiol Methods 70:452–464PubMedCrossRefGoogle Scholar
  29. 29.
    Hermann M, Fayolle F, Marchal R, Podvinl L, Sebald M, Vandecasteelei JP (1985) Isolation and characterization of butanol-resistant mutants of Clostridium acetobutylicum. Appl Environ Microbiol 50:1238–1243PubMedGoogle Scholar
  30. 30.
    Inui M, Suda M, Kimura S, Yasuda K, Suzuki H, Toda H, Yamamoto S, Okino S, Suzuki N, Yukawa H (2008) Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli. Appl Microbiol Biotechnol 77:1305–1316PubMedCrossRefGoogle Scholar
  31. 31.
    Jones DT, Shirley M, Wu X, Keis S (2000) Bacteriophage infections in the industrial acetone butanol (AB) fermentation process. J Mol Microbiol Biotechnol 2:21–26PubMedGoogle Scholar
  32. 32.
    Kashket ER, Cao ZY (1993) Isolation of a degeneration-resistant mutant of Clostridium acetobutylicum NCIMB 8052. Appl Environ Microbiol 59:4198–4202PubMedGoogle Scholar
  33. 33.
    Lee J, Mitchell WJ, Tangney M, Blaschek HP (2005) Evidence for the presence of an alternative glucose transport system in Clostridium beijerinckii NCIMB 8052 and the solvent- hyperproducing mutant BA101. Appl Environ Microbiol 71:3384–3387PubMedCrossRefGoogle Scholar
  34. 34.
    Lee SY, Park JH, Jang SH, Nielsen LK, Kim J, Jung KS (2008) Fermentative butanol production by clostridia. Biotechnol Bioeng 101:209–228PubMedCrossRefGoogle Scholar
  35. 35.
    Lienhardt J, Schripsema J, Qureshi N, Blaschek HP (2002) Butanol production by Clostridium beijericknii BA101 in an immobilized cell biofilm reactor. Appl Biochem Biotechnol 98–100:591–598PubMedCrossRefGoogle Scholar
  36. 36.
    Liyanage H, Holcroft P, Evans VJ, Keis S, Wilkinson SR, Kashket ER, Young M (2000) A new insertion sequence, ISCb1, from Clostridium beijerinckii NCIMB 8052. J Mol Microbiol Biotechnol 2:107–113PubMedGoogle Scholar
  37. 37.
    Louis P, McCrae SL, Charrier C, Flint HJ (2007) Organization of butyrate synthetic genes in human colonic bacteria: phylogenetic conservation and horizontal gene transfer. FEMS Microbiol Lett 269:240–247PubMedCrossRefGoogle Scholar
  38. 38.
    Maddox IS, Steiner E, Hirsch S, Wessner S, Gutierrez NA, Gapes JR, Schuster KC (2000) The cause of “acid crash” and “acidogenic fermentations” during the batch acetone-butanol-ethanol (ABE-) fermentation process. J Mol Microbiol Biotechnol 2:95–100PubMedGoogle Scholar
  39. 39.
    Mavrovouniotis ML (1990) Group contributions for estimating standard Gibbs energies of formation of biochemical compounds in aqueous solution. Biotechnol Bioeng 36:1070–1082PubMedCrossRefGoogle Scholar
  40. 40.
    Mavrovouniotis ML (1991) Estimation of standard Gibbs energy changes of biotransformations. J Biol Chem 266:14440–14445PubMedGoogle Scholar
  41. 41.
    Mermelstein LD, Papoutsakis ET, Petersen DJ, Bennett GN (1993) Metabolic engineering of Clostridium acetobutylicum ATCC 824 for increased solvent production by enhancement of acetone formation enzyme-activities using a synthetic acetone operon. Biotechnol Bioeng 42:1053–1060Google Scholar
  42. 42.
    Mermelstein LD, Welker NE, Bennett GN, Papoutsakis ET (1992) Expression of cloned homologous fermentative genes in Clostridium acetobutylicum ATCC 824. Biotechnology 10:190–195PubMedCrossRefGoogle Scholar
  43. 43.
    Milestone NB, Bibby DM (1981) Concentration of alcohols by adsorption on silicalite. J Chem Technol Biotechnol 31:732–736Google Scholar
  44. 44.
    Mutschlechner O, Swoboda H, Gapes JR (2000) Continuous two-stage ABE-fermentation using Clostridium beijerinckii NRRL B592 operating with a growth rate in the first stage vessel close to its maximal value. J Mol Microbiol Biotechnol 2:101–105PubMedGoogle Scholar
  45. 45.
    Nair RV, Green EM, Watson DE, Bennett GN, Papoutskis ET (1999) Regulation of the sol locus genes for butanol and acetone formation in Clostridium acetobutylicum ATCC 824 by a putative transcriptional repressor. J Bacteriol 181:319–330PubMedGoogle Scholar
  46. 46.
    Nair RV, Papoutsakis ET (1994) Expression of plasmid-encoded aad in Clostridium acetobutylicum M5 restores vigorous butanol production. J Bacteriol 176:5843–5846PubMedGoogle Scholar
  47. 47.
    Nakayama S, Kosaka T, Hirakawa H, Matsuura K, Yoshino S, Furukawa K (2008) Metabolic engineering for solvent productivity by downregulation of the hydrogenase gene cluster hupCBA in Clostridium saccharoperbutylacetonicum strain N1–4. Appl Microbiol Biotechnol 78:483–493PubMedCrossRefGoogle Scholar
  48. 48.
    Nakayama S, Morita T, Negishi H, Ikegami T, Sakaki K, Kitamoto D (2008) Candida krusei produces ethanol without production of succinic acid; a potential advantage for ethanol recovery by pervaporation membrane separation. FEMS Yeast Res 8(5):706–714PubMedCrossRefGoogle Scholar
  49. 49.
    Narberhaus F, Giebeler K, Bahl H (1992) Molecular characterization of the dnaK gene region of Clostridium acetobutylicum, including grpE, dnaJ, and a new heat shock gene. J Bacteriol 174:3290–3299PubMedGoogle Scholar
  50. 50.
    Nölling J, Breton G, Omelchenko MV, Makarova KS, Zeng QD, Gibson R, Lee HM, Dubois J, Qiu D, Hitti J, Wolf YI, Tatusov RL, Sabathe F, Doucette-Stamm L, Soucaille P, Daly MJ, Bennett GN, Koonin EV, Smith DR (2001) Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum. J Bacteriol 183:4823–4838PubMedCrossRefGoogle Scholar
  51. 51.
    Oh MK, Liao JC (2000) DNA microarray detection of metabolic responses to protein overproduction in Escherichia coli. Metab Eng 2:201–209PubMedCrossRefGoogle Scholar
  52. 52.
    Parekh M, Blaschek HP (1999) Butanol production by hypersolvent-producing mutant Clostridium beijerinckii BA101 in corn steep water medium containing maltodextrin. Biotechnol Lett 21:45–48CrossRefGoogle Scholar
  53. 53.
    Quixiey KWM, Reid SJ (2000) Construction of a reporter gene vector for Clostridium beijerinckii using a Clostridium endoglucanase gene. J Mol Microbiol Biotechnol 2:53–57Google Scholar
  54. 54.
    Qureshi N, Blaschek HP (2001) Recovery of butanol from fermentation broth by gas stripping. Renew Energy 22:557–564CrossRefGoogle Scholar
  55. 55.
    Qureshi N, Saha BC, Hector RE, Hughes SR, Cotta MA (2008) Butanol production from wheat straw by simultaneous saccharification and fermentation using Clostridium beijerinckii: Part I—batch fermentation. Biomass Bioenerg 32:168–175CrossRefGoogle Scholar
  56. 56.
    Rao G, Mutharasan R (1987) Altered electron flow in continuous cultures of Clostridium acetobutylicum induced by viologen dyes. Appl Environ Microbiol 53:1232–1235PubMedGoogle Scholar
  57. 57.
    Ravagnani A, Jennert KC, Steiner E, Grunberg R, Jefferies JR, Wilkinson SR, Young DI, Tidswell EC, Brown DP, Youngman P, Morris JG, Young M (2000) Spo0A directly controls the switch from acid to solvent production in solvent-forming Clostridia. Mol Microbiol 37:1172–1185PubMedCrossRefGoogle Scholar
  58. 58.
    Santangelo JD, Kuhn A, Treuner-Lange A, Dürre P (1998) Sporulation and time course expression of sigma-factor homologous genes in Clostridium acetobutylicum. FEMS Microbiol Lett 161:157–164Google Scholar
  59. 59.
    Sauer U, Treuner A, Buchholz M, Santangelo JD, Dürre P (1994) Sporulation and primary sigma factor homologous genes in Clostridium acetobutylicum. J Bacteriol 176:6572–6582PubMedGoogle Scholar
  60. 60.
    Scotcher MC, Rudolph FB, Bennett GN (2005) Expression of abrB310 and sinR, and effects of decreased abrB310 expression on the transition from acidogenesis to solventogenesis, in Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol 71:1987–1995PubMedCrossRefGoogle Scholar
  61. 61.
    Shen CR, Liao JC (2008) Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via keto-acid pathways. Metab Eng 10:312–320PubMedCrossRefGoogle Scholar
  62. 62.
    Shi ZP, Zhang CY, Chen JX, Mao ZG (2005) Performance evaluation of acetone–butanol continuous flash extractive fermentation process. Bioprocess Biosyst Eng 27:175–183PubMedCrossRefGoogle Scholar
  63. 63.
    Shinto H, Tashiro Y, Kobayashi G, Sekiguchi T, Hanai T, Kuriya Y, Okamoto M, Sonomoto K (2008) Kinetic study of substrate dependency for higher butanol production in acetone-butanol-ethanol fermentation. Process Biochem 43:1452–1461CrossRefGoogle Scholar
  64. 64.
    Sillers R, Chow A, Tracy AB, Papoutsakis ET (2008) Metabolic engineering of the non-sporulating, non-solventogenic Clostridium acetobutylicum strain M5 to produce butanol without acetone demonstrate the robustness of the acid-formation pathways and the importance of the electron balance. Metab Eng 10:321–332PubMedCrossRefGoogle Scholar
  65. 65.
    Tashiro Y, Shinto H, Hayashi M, Baba S, Kobayashi G, Sonomoto K (2007) Novel high-efficient butanol production from butyrate by non-growing Clostridium saccharoperbutylacetonicum N1–4 (ATCC 13564) with methyl viologen. J Biosci Bioeng 104:238–240PubMedCrossRefGoogle Scholar
  66. 66.
    Thormann K, Dürre P (2001) Orf5/SolR: a transcriptional repressor of the sol operon of Clostridium acetobutylicum? J Ind Microbiol Biotechnol 27:307–313PubMedCrossRefGoogle Scholar
  67. 67.
    Thormann K, Feustel L, Lorenz K, Nakotte S, Dürre P (2002) Control of butanol formation in Clostridium acetobutylicum by transcriptional activation. J Bacteriol 184:1966–1973PubMedCrossRefGoogle Scholar
  68. 68.
    Tomas CA, Welker NE, Papoutsakis ET (2003) Overexpression of groESL in Clostridium acetobutylicum results in increased solvent production and tolerance, prolonged metabolism, and changes in the cell’s transcriptional program. Appl Environ Microbiol 69:4951–4965PubMedCrossRefGoogle Scholar
  69. 69.
    Tummala SB, Junne SG, Papoutsakis ET (2003) Antisense RNA downregulation of coenzyme A transferase combined with alcohol-aldehyde dehydrogenase overexpression leads to predominantly alcohologenic Clostridium acetobutylicum fermentations. J Bacteriol 185:3644–3653PubMedCrossRefGoogle Scholar
  70. 70.
    Tummala SB, Welker NE, Papoutsakis ET (2003) Design of antisense RNA constructs for downregulation of the acetone formation pathway of Clostridium acetobutylicum. J Bacteriol 185:1923–1934PubMedCrossRefGoogle Scholar
  71. 71.
    Vasconcelosi I, Girbal L, Soucaille P (1994) Regulation of carbon and electron flow in Clostridium acetobutylicum grown in chemostat culture at neutral pH on mixtures of glucose and glycerol. J Bacteriol 176:1443–1450Google Scholar
  72. 72.
    Wiesenborn DP, Rudolph FB, Papoutsakis ET (1988) Thiolase from Clostridium acetobutylicum ATCC 824 and its role in the synthesis of acids and solvents. Appl Environ Microbiol 54:2717–2722PubMedGoogle Scholar
  73. 73.
    Wong J, Bennett GN (1996) The effect of novobiocin on solvent production by Clostridium acetobutylicum. J Ind Microbiol 16:354–359PubMedCrossRefGoogle Scholar
  74. 74.
    Yan RT, Zhu CX, Golemboski C, Chen JS (1988) Expression of solvent-forming enzymes and onset of solvent production in batch cultures of Clostridium beijerinckii. Appl Environ Microbiol 54:642–648PubMedGoogle Scholar

Copyright information

© Society for Industrial Microbiology 2009

Authors and Affiliations

  • Yan-Ning Zheng
    • 1
  • Liang-Zhi Li
    • 1
  • Mo Xian
    • 1
    Email author
  • Yu-Jiu Ma
    • 1
  • Jian-Ming Yang
    • 1
  • Xin Xu
    • 1
  • Dong-Zhi He
    • 2
  1. 1.Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
  2. 2.College of Professional TechnologyDalian Polytechnic UniversityDalianChina

Personalised recommendations