Skip to main content
Log in

Screening pentachlorophenol degradation ability by environmental fungal strains belonging to the phyla Ascomycota and Zygomycota

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Pentachlorophenol (PCP) bioremediation by the fungal strains amongst the cork-colonising community has not yet been analysed. In this paper, the co- and direct metabolism of PCP by each of the 17 fungal species selected from this community were studied. Using hierarchical data analysis, the isolates were ranked by their PCP bioremediation potential. Fifteen isolates were able to degrade PCP under co-metabolic conditions, and surprisingly Chrysonilia sitophila, Trichoderma longibrachiatum, Mucor plumbeus, Penicillium janczewskii and P. glandicola were able to directly metabolise PCP, leading to its complete depletion from media. PCP degradation intermediates are preliminarily discussed. Data emphasise the significance of these fungi to have an interesting potential to be used in PCP bioremediation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

PCP:

Pentachlorophenol

HQ:

Hydroquinone

CHQ:

Chlorohydroquinone

TeCHQ:

Tetrachlorohydroquinone

DCBQ:

2,6-Dichloro-1,4-benzoquinone

TeCBQ:

Tetrachloro-1,4-benzoquinone

PCA:

Pentachloroanisole

References

  1. Alvarez-Rodriguez ML, Lopez-Ocana L, Lopez-Coronado JM, Rodriguez E, Martinez MJ, Larriba G, Coque JJR (2002) Cork taint of wines: role of the filamentous fungi isolated from cork in the formation of 2,4,6-trichloroanisole by O-methylation of 2,4,6-trichlorophenol. Appl Environ Microbiol 68(12):5860–5869

    Article  PubMed  CAS  Google Scholar 

  2. Basílio MC, Gaspar R, Silva Pereira C, San Romão MV (2006) Penicillium glabrum cork colonising isolates—preliminary analysis of their genomic similarity. Rev Iberoam Micol 23(3):151–154

    Article  PubMed  Google Scholar 

  3. Borazjani H, Ferguson B, Hendrix F, McFarland L, McGinnis G, Pope D, Strobel D, Wagner J (1989) Cladosporium sp., a potential fungus for bioremediation of wood-treating wastes. Abs Papers Am Chem Soc 197:80-ENVR

    Google Scholar 

  4. Carlile M, Watkinson S, Gooday G (2001) The fungi. Elsevier Academic Press, Amsterdam, p 588

    Google Scholar 

  5. Cserjesi AJ (1967) Adaptation of fungi to pentachlorophenol and its biodegradation. Can J Microbiol 13(9):1243–1245

    Article  PubMed  CAS  Google Scholar 

  6. Cserjesi AJ, Johnson EL (1972) Methylation of pentachlorophenol by Trichoderma virgatum. Can J Microbiol 18(1):45–47

    PubMed  CAS  Google Scholar 

  7. Czaplicka M (2004) Sources and transformations of chlorophenols in the natural environment. Sci Total Environ 322(1–3):21–39

    PubMed  CAS  Google Scholar 

  8. Danesh P, Velez Caldas F, Figueiredo Marques J, San Romao M (1997) Mycobiota in Portuguese ‘normal’ and ‘green’ cork throughout the manufacturing process of stoppers. J Appl Microbiol 82(6):689–694

    Article  PubMed  CAS  Google Scholar 

  9. Fahr K, Wetzstein HG, Grey R, Schlosser D (1999) Degradation of 2,4-dichlorophenol and pentachlorophenol by two brown rot fungi. FEMS Microbiol Lett 175(1):127–132

    Article  PubMed  CAS  Google Scholar 

  10. Johnson ME, Szekely A, Warnock DW (1998) In vitro activity of voriconazole, itraconazole and amphotericin B against filamentous fungi. J Antimicrob Chemother 42:741–745

    Article  PubMed  CAS  Google Scholar 

  11. Lacey J (1973) The air spora of a Portuguese cork factory. Ann Occup Hyg 16(3):223–230

    Article  PubMed  CAS  Google Scholar 

  12. Lamar RT, Larsen MJ, Kirk TK (1990) Sensitivity to and degradation of pentachlorophenol by Phanerochaete spp. Appl Environ Microbiol 56(11):3519–3526

    PubMed  CAS  Google Scholar 

  13. Lyytikäinen M, Sormunen A, Peräniemi S, Kukkonen J (2001) Environmental fate and bioavailabilty of wood preservatives in freshwater sediments near an old sawmill site. Chemosphere 44(3):341–350

    Article  PubMed  Google Scholar 

  14. Maggi L, Mazzoleni V, Fumi MD, Salinas MR (2008) Transformation ability of fungi isolated from cork and grape to produce 2,4,6-trichloroanisole from 2,4,6-trichlorophenol. Food Addit Contam 25(3):265–269

    Article  CAS  Google Scholar 

  15. McLellan L, Carvalho M, Silva Pereira C, Hursthouse A, Morrison C, Tatner P, Martins I, Romão MVS, Leitão M (2007) The environmental behaviour of polychlorinated phenols and its relevance to cork forest ecosystems: a review. J Environ Monitor 9:1055–1063

    Article  CAS  Google Scholar 

  16. Mileski GJ, Bumpus JA, Jurek MA, Aust SD (1988) Biodegradation of pentachlorophenol by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 54(12):2885–2889

    PubMed  CAS  Google Scholar 

  17. Oliveira AC, Peres CM, Correia Pires JM, Silva Pereira C, Vitorino S, Figueiredo Marques JJ, Barreto Crespo MT, San Romao MV (2003) Cork stoppers industry: defining appropriate mould colonization. Microbiol Res 158(2):117–124

    Article  PubMed  CAS  Google Scholar 

  18. Prak S, Gunata Z, Guiraud JP, Schorr-Galindo S (2007) Fungal strains isolated from cork stoppers and the formation of 2,4,6-trichloroanisole involved in the cork taint of wine. Food Microbiol 24:271–280

    Article  PubMed  CAS  Google Scholar 

  19. Rabinovich ML, Bolobova AV, Vasil’chenko LG (2004) Fungal decomposition of natural aromatic structures and xenobiotics: a review. Appl Biochem Microbiol 40(1):1–17

    Article  CAS  Google Scholar 

  20. Reddy GVB, Gold MH (2000) Degradation of pentachlorophenol by Phanerochaete chrysosporium: intermediates and reactions involved. Microbiology 146:405–413

    PubMed  CAS  Google Scholar 

  21. Reddy GVB, Gelpke MDS, Gold MH (1998) Degradation of 2,4,6-trichlorophenol by Phanerochaete chrysosporium: involvement of reductive dechlorination. J Bacteriol 180(19):5159–5164

    PubMed  CAS  Google Scholar 

  22. Seigle-Murandi F, Guiraud P, Steiman R, Benoitguyod JL (1992) Phenoloxidase production and vanillic acid metabolism by Zygomycetes. Microbiologica 15(2):157–165

    PubMed  CAS  Google Scholar 

  23. Seigle-Murandi F, Steiman R, Benoitguyod JL, Guiraud P (1993) Fungal degradation of pentachlorophenol by micromycetes. J Biotechnol 30(1):27–35

    Article  CAS  Google Scholar 

  24. Seigle-Murandi F, Toe A, Benoitguyod JL, Steiman R, Kadri M (1995) Depletion of pentachlorophenol by Deuteromycetes isolated from soil. Chemosphere 31(2):2677–2686

    Article  CAS  Google Scholar 

  25. Semple KT, Reid BJ, Fermor TR (2001) Impact of composting strategies on the treatment of soils contaminated with organic pollutants. Environ Pollut 26:9–283

    Google Scholar 

  26. Serra R, Peterson S, Venancio A (2008) Multilocus sequence identification of Penicillium species in cork bark during plank preparation for the manufacture of stoppers. Res Microbiol 159(3):178–186

    PubMed  CAS  Google Scholar 

  27. Silva Pereira C, Marques JJF, San Romão MV (2000) Cork taint in wine: scientific knowledge and public perception—a critical review. Crit Rev Microbiol 26(3):147–162

    Article  PubMed  CAS  Google Scholar 

  28. Silva Pereira C, Pires A, Valle MJ, Vilas-Boas L, Figueiredo Marques JJ, San Romão MV (2000) Role of Chrysonilia sitophila on the quality for cork stoppers for sealing wine bottle. J Ind Microbiol Biotech 24:256–261

  29. Silva Pereira C, Soares GAM, Oliveira AC, Rosa ME, Pereira H, Moreno N, Romão MVS (2006) Effect of fungal colonization on mechanical performance of cork. Int Biodeter Biodegr 57(4):244–250

    Article  CAS  Google Scholar 

  30. Soares GAM, Basílio MC, Tenreiro R, San Romão MV (2003) Diversity of Penicillium spp. colonising cork slabs: a classical and molecular approach. In: Lima N, Smith D (eds) Biological resource centres and the use of microbes. Micoteca da Universidade do Minho, Braga, pp 161–170

    Google Scholar 

  31. Solyanikova IP, Golovleva LA (2004) Bacterial degradation of chlorophenols: pathways, biochemical and genetic aspects. J Environ Sci Health Part B 39(3):333–351

    Article  CAS  Google Scholar 

  32. Szewczyk R, Bernat P, Milczarek K, Dlugonski J (2003) Application of microscopic fungi isolated from polluted industrial areas for polycyclic aromatic hydrocarbons and pentachlorophenol reduction. Biodegradation 14(1):1–8

    Article  PubMed  CAS  Google Scholar 

  33. Taylor TR, Tucker T, Whalen MM (2005) Persistent inhibition of human natural killer cell function by ziram and pentachlorophenol. Environ Toxicol 20(4):418–424

    Article  PubMed  CAS  Google Scholar 

  34. Tomasini A, Flores V, Cortes D, Barrios-Gonzalez J (2001) An isolate of Rhizopus nigricans capable of tolerating and removing pentachlorophenol. World J Microbiol Biotechnol 17(2):201–205

    Article  CAS  Google Scholar 

  35. Tortella GR, Diez MC, Duran N (2005) Fungal diversity and use in decomposition of environmental pollutants. Crit Rev Microbiol 31(4):197–212

    Article  PubMed  CAS  Google Scholar 

  36. van Leeuwen JA, Nicholson BC, Hayes KP, Mulcahy DE (1997) Degradation of chlorophenolic compounds by Trichoderma harzianum isolated from Lake Bonney, South-Eastern South Australia. Environ Toxicol Water Qual 12(4):335–342

    Article  Google Scholar 

  37. Wong AS, Crosby DG (1981) Photo-decomposition of pentachlorophenol in water. J Agric Food Chem 29(1):125–130

    Article  CAS  Google Scholar 

Download references

Acknowledgments

MBC is grateful to FC&T for the fellowship SFRH/BD/18205/2004. The work was partially supported by FC&T (POCTI/AMB/57374/2004 and POCTI/QUI/56229/2004) and by NATO (ESP.MD.SFPP 981674). The authors wish to acknowledge M. Carmo Basílio and Dr. M. Vitória San Romão for providing the fungal strains used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Silva Pereira.

Additional information

M. B. Carvalho and I. Martins have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carvalho, M.B., Martins, I., Leitão, M.C. et al. Screening pentachlorophenol degradation ability by environmental fungal strains belonging to the phyla Ascomycota and Zygomycota. J Ind Microbiol Biotechnol 36, 1249–1256 (2009). https://doi.org/10.1007/s10295-009-0603-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-009-0603-2

Keywords

Navigation