Skip to main content
Log in

Isolation and characterization of halophilic Archaea able to produce biosurfactants

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Halotolerant microorganisms able to live in saline environments offer a multitude of actual or potential applications in various fields of biotechnology. This is why some strains of Halobacteria from an Algerian culture collection were screened for biosurfactant production in a standard medium using the qualitative drop-collapse test and emulsification activity assay. Five of the Halobacteria strains reduced the growth medium surface tension below 40 mN m−1, and two of them exhibited high emulsion-stabilizing capacity. Diesel oil-in-water emulsions were stabilized over a broad range of conditions, from pH 2 to 11, with up to 35% sodium chloride or up to 25% ethanol in the aqueous phase. Emulsions were stable to three cycles of freezing and thawing. The components of the biosurfactant were determined; it contained sugar, protein and lipid. The two Halobacteria strains with enhanced biosurfactant producers, designated strain A21 and strain D21, were selected to identify by phenotypic, biochemical characteristics and by partial 16S rRNA gene sequencing. The strains have Mg2+, and salt growth requirements are always above 15% (w/v) salts with an optimal concentration of 15–25%. Analyses of partial 16S rRNA gene sequences of the two strains suggested that they were halophiles belonging to genera of the family Halobacteriaceae, Halovivax (strain A21) and Haloarcula (strain D21). To our knowledge, this is the first report of biosurfactant production at such a high salt concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abu-Ruwaida AS, Banat IM, Haditirto S, Khamis A (1991) Nutritional requirements and growth characteristics of a biosurfactant producing Rhodococcus bacterium. World J Microbiol Biotechnol 7:53–61. doi:10.1007/BF02310920

    Article  Google Scholar 

  2. Al-Batashi F, Al-Siyabi N, Al-Hajri Z, Al-Amri I, Patzelt H (2002) Cleaning up oil contaminations in production water using novel halophilic Archaea (microorganisms) from Oman. In: Yacob NC (ed) Proceedings of the fifth international conference on chemistry in industry. Aramco, Bahrain (CD edition)

  3. Anton J, Meseguer I, Rodriguez-Valera F (1988) Production of an extracellular polysaccharide by Haloferax mediferranei. Appl Environ Microbiol 54:2381–2386

    PubMed  CAS  Google Scholar 

  4. Anton J, Garcia-Lillo JA, Meseguer I, Rodriguez-Valera F (1989) Biopolymer production by Haloferax mediterranei. In: Rodriguez-Valera F (ed) General and applied aspects of halophilic microorganisms. Plenum Press, New York, pp 373–388

    Google Scholar 

  5. Austin B (1989) Novel pharmaceutical compounds from marine bacteria. J Appl Bacteriol 67:461–470

    PubMed  CAS  Google Scholar 

  6. Banat IM (1995) Biosurfactants production and possible uses in microbial enhanced oil recovery and oil pollution remediation: a review. Bioresour Technol 51:1–12. doi:10.1016/0960-8524(94)00101-6

    Article  CAS  Google Scholar 

  7. Banat IM, Makkar RS, Cameotra SS (2000) Potential commercial applications of microbial surfactants. Appl Microbiol Biotechnol 53:495–508. doi:10.1007/s002530051648

    Article  PubMed  CAS  Google Scholar 

  8. Bertrand JC, Almallah M, Acquariva M, Mille G (1990) Biodegradation of hydrocarbons by an extremely halophilic archae bacterium. Lett Appl Microbiol 11:260–263. doi:10.1111/j.1472-765X.1990.tb00176.x

    Article  CAS  Google Scholar 

  9. Bodour AA, Maier RM (1998) Application of a modified dropcollapse technique for surfactant quantification and screening of biosurfactant-producing microorganisms. J Microbiol Methods 32:273–280. doi:10.1016/S0167-7012(98)00031-1

    Article  CAS  Google Scholar 

  10. Bodour AA, Drees KP, Maier RM (2003) Distribution of biosur-factant-producing microorganisms in undisturbed and contaminated arid southwestern soils. Appl Environ Microbiol 69:3280–3287. doi:10.1128/AEM.69.6.3280-3287.2003

    Article  PubMed  CAS  Google Scholar 

  11. Brown TD (1983) Halophilic prokaryotes. In: Lange OL, Nobel PS, Osmond CB, Zieglar H (eds) Encyclopedia of plant physiology, vol 126. Springer, Berlin, pp 137–162

    Google Scholar 

  12. Cameotra SS, Makkar RS (1998) Synthesis of biosurfactants in extreme conditions. Appl Microbiol Biotechnol 50:520–529. doi:10.1007/s002530051329

    Article  PubMed  CAS  Google Scholar 

  13. Cameron DR, Cooper DG, Neufeld RJ (1988) The manoprotein of Saccharomyces cereviciae is an effective bioemulsifier. Appl Environ Microbiol 54:1420–1425

    PubMed  CAS  Google Scholar 

  14. Cameotra SS, Makkar RS (2004) Recent applications of biosurfactants as biological and immunological molecules. Curr Opin Microbiol 7:262–266. doi:10.1016/j.mib.2004.04.006

    Article  PubMed  CAS  Google Scholar 

  15. Castillo AM, Gutiérrez MC, Kamekura M, Xue Y, Ma Y, Cown DA, Jones BE, Grant W, Ventosa A (2006) Halovivax asiaticus gen. nov., sp. nov., a novel extremely halophilic archaeon isolated from Inner Mongolia, China. Int J Syst Evol Microbiol 56:765–770. doi:10.1099/ijs.0.63954-0

    Article  PubMed  CAS  Google Scholar 

  16. Cooper DG, Zajic JE, Gerson DF (1979) Production of surfaceactive lipids by Corynebacterium leprus. Appl Environ Microbiol 37:4–10

    PubMed  CAS  Google Scholar 

  17. Cooper DG, MacDonald CR, Duff SJB, Kosaric N (1981) Enhanced production of surfactin from Bacillus subtilis by continuous product removal and metal cation additions. Appl Environ Microbiol 42:408–412

    PubMed  CAS  Google Scholar 

  18. Cooper DG, Goldenberg BG (1987) Surface Active agent from two Bacillus Species. Appl Environ Microbiol 53:224–229

    PubMed  CAS  Google Scholar 

  19. Cuadros-Orellana S, Metchild Pohlschrode M, Durrant LR (2006) Isolation and characterization of halophilic Archaea able to grow in aromatic compounds. Int Biodeterior Biodegradation 57:151–154. doi:10.1016/j.ibiod.2005.04.005

    Article  CAS  Google Scholar 

  20. Cytryn E, Minz D, Oremland RS, Cohen Y (2000) Distribution and diversity of Archaea corresponding to the limnological cycle of a hypersaline stratified lake (Solar Lake, Sinai, Egypt). Appl Environ Microbiol 66:3269–3276. doi:10.1128/AEM.66.8.3269-3276.2000

    Article  PubMed  CAS  Google Scholar 

  21. Das M, Das SK, Mukherjee RK (1998) Surface active properties of the culture filtrates of a Micrococcus species grown on n-alkenes and sugars. Bioresour Technol 63:231–235. doi:10.1016/S0960-8524(97)00133-8

    Article  CAS  Google Scholar 

  22. Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:47–64

    PubMed  CAS  Google Scholar 

  23. Dussault HP (1955) An improved technique for staining red halophilic bacteria. J Bacteriol 70:484–485

    PubMed  CAS  Google Scholar 

  24. Emerson D, Chauhan S, Oriel P, Breznak JA (1994) Haloferax sp.D1227, a halophilic Archaeon capable of growth on aromatic compounds. Arch Microbiol 161:445–452. doi:10.1007/BF00307764

    Article  CAS  Google Scholar 

  25. Fairley DJ, Boyd DR, Sharma ND, Allen CCR, Morgan P, Larkin MJ (2002) Aerobic metabolism of 4-hydroxybenzoic acid in Archaea via an unusual pathway involving an intramolecular migration shift (NIH shift). Appl Environ Microbiol 68:6246–6255. doi:10.1128/AEM.68.12.6246-6255.2002

    Article  PubMed  CAS  Google Scholar 

  26. Fiebig R, Schulze D, Chung JC, Lee ST (1997) Biodegradation of biphenyls (PCBs) in the presence of a bioemulsifier produced on sunflower oil. Biodegradation 8:67–75. doi:10.1023/A:1008256110136

    Article  CAS  Google Scholar 

  27. Galinski EA, Tindall BJ (1992) Biotechnological prospects for halophiles and halotolerant micro-organisms. In: Herbert RD, Sharp RJ (eds) Molecular biology and biotechnology of extremophiles. Blackie, London, pp 76–114

    Google Scholar 

  28. Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA, Krieg NR, Phillips GB (1981) Manual of methods for general bacteriology. American Society for Microbiology, Washington, D.C

  29. Grant WD, Larsen H (1989) Extremely halophilic archaeobacteria. Order Halobacteriales ord nov. In: Staley JT, Bryant MP, Pfennig N, Holt JG (eds) Bergey’s manual of systematic bacteriology. Williams and Wilkins, Baltimore, pp 2216–2233

    Google Scholar 

  30. Grant WD, Gemmell RT, McGenity TJ (1998) Halophiles. In: Horikoshi K, Grand WD (eds) Extremophiles: microbial life in extreme environments. Wiley-Liss, New York, pp 93–132

    Google Scholar 

  31. Grula MM, Russell HH, Janloo SM, Conway T (1991) Effects of sodium chloride on growth and metabolism of two strains of Clostridium. Microb Enhancement Oil Recovery Recent Adv 31:183–206

    Article  Google Scholar 

  32. Haddad NIA, Wang J, Mu B (2008) Isolation and characterization of a biosurfactant producing strain, Brevibacilis brevis HOB1. J Ind Microbiol Biotechnol 35:1597–1604. doi:10.1007/s10295-008-0403-0

    Article  PubMed  CAS  Google Scholar 

  33. Hayashi T, Hayashi K (1996) Calcium spirulan, an inhibitor of enveloped virus replication, from a bluegreen alga Spirulina platensis. J Nat Prod 59:83–87. doi:10.1021/np960017o

    Article  PubMed  CAS  Google Scholar 

  34. Hodge JE, Hofreiter BT (1962) Determination of reducing sugars in carbohydrates. In: Whistler RL, Wolfrom ML (eds) Methods in carbohydrate chemistry, vol 1. Academic, New York, pp 388–390

    Google Scholar 

  35. Jain DK, Collins-Thompson DL, Lee H, Trevors JT (1991) A drop-collapsing test for screening surfactant-producing microorganisms. J Microbiol Methods 13:271–279. doi:10.1016/0167-7012(91)90064-W

    Article  Google Scholar 

  36. Javaheri M, Jenneman GE, McInerney MJ, Knapp RM (1985) Anaerobic production of a biosurfactant by Bacillus licheniformis JF-2. Appl Environ Microbiol 50:698–700

    PubMed  Google Scholar 

  37. Kamekura M, Dyall-Smith ML (1995) Taxonomy of the family Halobacteriaceae and the description of two genera Halorubrobacterium and natrialba. J Gen Appl Microbiol 41:333–350. doi:10.2323/jgam.41.333

    Article  CAS  Google Scholar 

  38. Kamekura M, Dyall-Smith ML, Upsani V, Ventosa A, Kates M (1997) Diversity of alkaliphilic halobacteria: proposals for transfer of Natronobacterium vacuolatum, Natronobacterium magadii and Natronobacterium pharaonis to Halorubrum, Natrialba, and Natronomonas gen nov, respectively, as Halorubrum vacuolatum comb nov, Natrialba magadii comb nov, and Natronomonas pharaonis comb nov, respectively. Int J Syst Bacteriol 47:853–857

    PubMed  CAS  Google Scholar 

  39. Kim SH, Lim EJ, Lee SO, Lee JD, Lee TH (2000) Purification and characterization of biosurfactants from Nocardia sp. L-417. Biotechnol Appl Biochem 31:249–253. doi:10.1042/BA19990111

    Article  PubMed  Google Scholar 

  40. Kushner DJ (1978) Life in high salt and solute concentration. Halophilic bacteria. In: Kushner DJ (ed) Microbial life in extreme environments. Academic, London, pp 317–361

    Google Scholar 

  41. Kuyukina MS, Ivshina IB, Philip JC, Christofi N, Dunbar SAE, Ritchkova MI (2001) Recovery of Rhodococcus biosurfactants using methyl tertiary-butyl ether extraction. J Microbiol Methods 46:149–156. doi:10.1016/S0167-7012(01)00259-7

    Article  PubMed  CAS  Google Scholar 

  42. Lodwick D, Ross HNM, Walker JA, Almond JW, Grant WD (1991) Nucleotide sequence of the 16S ribosomal RNA gene from the haloalkaliphilic archaeon (archaebacterium) Natronobacterium magadii, and the phylogeny of halobacteria. Syst Appl Microbiol 14:352–357

    CAS  Google Scholar 

  43. Maier RM (2003) Biosurfactants: evolution and diversity in bacteria. Adv Appl Microbiol 52:101–121. doi:10.1016/S0065-2164(03)01004-9

    Article  PubMed  CAS  Google Scholar 

  44. Margaritis A, Zajic JE, Gerson DF (1979) Production of surface-active properties of microbial surfactants. Biotechnol Bioeng 21:1151. doi:10.1002/bit.260210706

    Article  CAS  Google Scholar 

  45. Margesin R, Schinner F (2001) Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 5:73–83. doi:10.1007/s007920100184

    Article  PubMed  CAS  Google Scholar 

  46. McGenity TE, Grant WD (1995) Transfer of Halobacterium saccharovorum, Halobacterium sodomense, Halobacterium trapanicum NRC 34021 and Halobacterium lacusprofundi to the Genus Halorubrum gen. nov., as Halorubrum saccharovorum comb. nov., and Halorubrum sodomense comb. nov., Halorubrum trapanicum comb. nov., and Halorubrum lacusprofundi comb. nov. Syst Appl Microbiol 18:237–243

    Google Scholar 

  47. Minz D, Green SJ, Flax JL, Muyzer G, Cohen Y, Wagner M, Rittmann BE, Stahl DA (1999) Diversity in sulfate reducing bacteria in oxicand anoxic regions of a microbial mat characterized by comparative analysis of dissimilatory sulfite reductase genes. Appl Environ Microbiol 65:4666–4671

    PubMed  CAS  Google Scholar 

  48. Mukherjee S, Das P, Sen R (2006) Towards commercial production of microbial surfactants. Trends Biotechnol 24:509–515

    Article  PubMed  CAS  Google Scholar 

  49. Oren A (1994) The ecology of the extremely halophilic Archaea. FEMS Microbiol Rev 13:415–440. doi:10.1111/j.1574-6976.1994.tb00060.x

    Article  CAS  Google Scholar 

  50. Oren A, Gurevich P, Gemmell RT, Teske A (1995) Halobaculum gomorrense gen nov sp nov, a novel extremely halophilic archaeon from the Dead Sea. Int J Syst Bacteriol 45:747–754

    Article  PubMed  CAS  Google Scholar 

  51. Pallas NR, Pethica BA (1983) The surface tension of water. Colloids Surf 6:221–227. doi:10.1016/0166-6622(83)80014-6

    Article  CAS  Google Scholar 

  52. Post FJ, Collins NF (1982) A preliminary investigation of the membrane lipid of Halobacterium halobium as a food additive. J Food Biochem 6:25–38. doi:10.1111/j.1745-4514.1982.tb00294.x

    Article  CAS  Google Scholar 

  53. Richard SB, Madern D, Garcin E, Zaccai G (2000) Halophilic adaptation: novel solvent-protein interactions observed in the 2.9 and 2.6 A resolution structures of a wild type and a mutant of malate desydrogenase from Haloarcula marismortui. Biochemistry 39:992. doi:10.1021/bi991001a

    Article  PubMed  CAS  Google Scholar 

  54. Rodriguez-Valera F (1988) Characteristics and microbial ecology of hypersaline environments. In: Rodriguez-Valera F (ed) Halophilic bacteria. CRC Press, Boca Raton, pp 3–30

    Google Scholar 

  55. Rodrigues LR, Teixeira JA, Van Der Mei HC, Oliveira R (2006) Isolation and partial characterisation of a biosurfactant produced by Streptococcus thermophilus A. Colloids Surf B Biointerfaces 53:105–112. doi:10.1016/j.colsurfb.2006.08.009

    Article  PubMed  CAS  Google Scholar 

  56. Trebbau de Acevedo G, McInerney MJ (1996) Emulsifying activity in thermophilic and extremely thermophlic microorganisms. J Ind Microbiol 16:1–7. doi:10.1007/BF01569914

    Article  CAS  Google Scholar 

  57. Ventosa A, Neto JJ (1995) Biotechnological applications and potentialities of halophilic microorganisms. World J Microbiol Biotechnol 11:85–94

    Article  CAS  Google Scholar 

  58. Ward DM, Brock TD (1978) Hydrocarbon biodegradation in hypersaline environments. Appl Environ Microbiol 35:353–359

    PubMed  CAS  Google Scholar 

  59. Willumsen PAE, Karlson U (1997) Screening of bacteria, isolated from PAH-contaminated soils, for production of biosurfactant and bioemulsifiers. Biodegradation 7:415–423. doi:10.1007/BF00056425

    Article  Google Scholar 

  60. Yakimov MM, Timmis KN, Wray V, Fredrickson HL (1995) Characterization of a new lipopeptide surfactant produced by thermotolerant and halotolerant subsurface Bacillus licheniformis BAS 50. Appl Environ Microbiol 61:1706–1713

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported with the assistance of the Sonatrach Center for Research and Development, a scientific cooperation agreement with the Algerian Ministry of Education. We are grateful to Pascal Groffe for technical assistance.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kebbouche-Gana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kebbouche-Gana, S., Gana, M.L., Khemili, S. et al. Isolation and characterization of halophilic Archaea able to produce biosurfactants. J Ind Microbiol Biotechnol 36, 727–738 (2009). https://doi.org/10.1007/s10295-009-0545-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-009-0545-8

Keywords

Navigation