Influence of abrasion on biofilm detachment: evidence for stratification of the biofilm

  • Alice Rochex
  • Anthony Massé
  • Renaud Escudié
  • Jean-Jacques Godon
  • Nicolas Bernet
Short Communication

Abstract

The objective of this paper was to understand the detachment of multispecies biofilm caused by abrasion. By submitting a biofilm to different abrasion strengths (collision of particles), stratification of biofilm cohesion could be highlighted and related to stratification of biofilm bacterial communities using the PCR-SSCP fingerprint method. The biofilm comprised a thick top layer, weakly cohesive and composed of one dominant species, and a thin basal layer, strongly cohesive and composed of a more diverse population. These observations suggest that microbial composition of biofilms may be an important parameter in understanding biofilm detachment.

Keywords

Abrasion Biofilm ecology Cohesion Stratification 

References

  1. 1.
    van Loosdrecht MCM, Eikelboom D, Gjaltema A, Mulder A, Tijhuis L, Heijnen JJ (1995) Biofilm structures. Water Sci Technol 32:35–43. doi:10.1016/0273-1223(96)00005-4 CrossRefGoogle Scholar
  2. 2.
    Horn H, Reiff H, Morgenroth E (2003) Simulation of growth and detachment in biofilm systems under defined hydrodynamic conditions. Biotechnol Bioeng 81:607–617. doi:10.1002/bit.10503 PubMedCrossRefGoogle Scholar
  3. 3.
    Derlon N, Massé A, Escudié R, Bernet N, Paul E (2008) Stratification in the cohesion of biofilms grown under various environmental conditions. Water Res 42:2102–2110. doi:10.1016/j.watres.2007.11.016 PubMedCrossRefGoogle Scholar
  4. 4.
    Morgenroth E, Wilderer WP (2000) Influence of detachment mechanisms on competition in biofilms. Water Res 34:417–426. doi:10.1016/S0043-1354(99)00157-8 CrossRefGoogle Scholar
  5. 5.
    Zhang TC, Bishop PL (1994) Structure, activity and composition of biofilms. Water Sci Technol 29:335–344Google Scholar
  6. 6.
    Okabe S, Hiratia K, Ozawa Y, Watanabe Y (1996) Spatial microbial distributions of nitrifiers and heterotrophs in mixed-population biofilms. Biotechnol Bioeng 50:24–35. doi:10.1002/(SICI)1097-0290(19960405)50:1<24::AID-BIT4>3.0.CO;2-3 PubMedCrossRefGoogle Scholar
  7. 7.
    Rochex A, Godon JJ, Bernet N, Escudie R (2008) Role of shear stress on composition, diversity and dynamics of biofilm bacterial communities. Water Res 42:4915–4922. doi:10.1016/j.watres.2008.09.015 PubMedCrossRefGoogle Scholar
  8. 8.
    Buffière P, Moletta R (2000) Collision frequency and collisional particle pressure in three-phase fluidized beds. Chem Eng Sci 55:5555–5563. doi:10.1016/S0009-2509(00)00186-X CrossRefGoogle Scholar
  9. 9.
    Cresson R, Escudié R, Carrère H, Delgenès JP, Bernet N (2007) Influence of hydrodynamic conditions on the start-up of methanogenic inverse turbulent bed reactors. Water Res 41:603–612. doi:10.1016/j.watres.2006.10.037 PubMedCrossRefGoogle Scholar
  10. 10.
    Michaud S, Bernet N, Roustan M, Delgenès JP (2003) Influence of hydrodynamic conditions on biofilm behavior in a methanogenic inverse turbulent bed reactor. Biotechnol Prog 19:858–863. doi:10.1021/bp025610c PubMedCrossRefGoogle Scholar
  11. 11.
    Wéry N, Bru-Adan V, Minervini C, Delgenès JP, Garrelly L, Godon JJ (2008) Dynamics of Legionella spp. and bacterial populations during the proliferation of L. pneumophila in a cooling tower facility. Appl Environ Microbiol 74:3030–3037. doi:10.1128/AEM.02760-07 PubMedCrossRefGoogle Scholar
  12. 12.
    Ohashi A, Harada H (1994) Adhesion strength of biofilm developed in a attached-growth reactor. Water Sci Technol 32:67–74Google Scholar
  13. 13.
    Ahimou F, Semmens MJ, Haugstad G, Novak PJ (2007) Effect of protein, polysaccharide, and oxygen concentration profiles on biofilm cohesiveness. Appl Environ Microbiol 73:2905–2910. doi:10.1128/AEM.02420-06 PubMedCrossRefGoogle Scholar
  14. 14.
    Jackson CR, Churchill PF, Roden EE (2001) Successional changes in bacterial assemblage structure during epilithic biofilm development. Ecology 82:555–566CrossRefGoogle Scholar
  15. 15.
    Martiny AC, Jorgensen TM, Albrechtsen HJ, Arvin E, Molin S (2003) Long-term succession of structure and diversity of a biofilm formed in a model drinking water distribution system. Appl Environ Microbiol 69:6899–6907. doi:10.1128/AEM.69.11.6899-6907.2003 PubMedCrossRefGoogle Scholar
  16. 16.
    Kwok WK, Picioreanu C, Ong SL, van Loosdrecht MCM, Ng WJ, Heijnen JJ (1998) Influence of biomass production and detachment forces on biofilm structures in a biofilm airlift suspension reactor. Biotechnol Bioeng 58:400–407. doi:10.1002/(SICI)1097-0290(19980520)58:4<400::AID-BIT7>3.0.CO;2-N PubMedCrossRefGoogle Scholar
  17. 17.
    Laspidou CS, Rittmann BE (2004) Modeling the development of biofilm density including active bacteria, inert biomass, and extracellular polymeric substances. Water Res 38:3349–3361. doi:10.1016/j.watres.2004.04.037 PubMedCrossRefGoogle Scholar
  18. 18.
    Stoodley P, Cargo R, Rupp CJ, Wilson S, Klapper I (2002) Biofilm material properties as related to shear-induced deformation and detachment phenomena. J Ind Microbiol Biotechnol 29:361–367. doi:10.1038/sj.jim.7000282 PubMedCrossRefGoogle Scholar
  19. 19.
    Dodds MG, Grobe KJ, Stewart PS (2000) Modeling biofilm antimicrobial resistance. Biotechnol Bioeng 68:456–465. doi:10.1002/(SICI)1097-0290(20000520)68:4<456::AID-BIT11>3.0.CO;2-Z PubMedCrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology 2009

Authors and Affiliations

  • Alice Rochex
    • 1
    • 2
  • Anthony Massé
    • 1
    • 3
  • Renaud Escudié
    • 1
  • Jean-Jacques Godon
    • 1
  • Nicolas Bernet
    • 1
  1. 1.INRA, UR50, Laboratoire de Biotechnologie de l’EnvironnementNarbonneFrance
  2. 2.ProBioGEM, UPRES-EA 1026, Laboratoire de Procédés Biologiques, Génie Enzymatique et Microbien, IUTA-Polytech-LilleUniversité des Sciences et Techniques de LilleVilleneuve d’AscqFrance
  3. 3.Laboratoire GEPEA UMR-CNRS 6144Université de Nantes, Boulevard de l’UniversitéSaint-Nazaire CedexFrance

Personalised recommendations