Lactose mother liquor as an alternative nutrient source for microbial concrete production by Sporosarcina pasteurii

Original Paper

Abstract

Microbiologically induced calcite precipitation by the bacterium Sporosarcina pasteurii (NCIM 2477) using the industrial effluent of the dairy industry, lactose mother liquor (LML) as growth medium was demonstrated for the first time in this study. The urease activity and the calcite precipitation by the bacterium was tested in LML and compared with the standard media like nutrient media and yeast extract media. Calcite constituted 24.0% of the total weight of the sand samples plugged by S. pasteurii and urease production was found to be 353 U/ml in LML medium. The compressive strength of cement mortar was increased by S. pasteurii in all the media used compared to control. No significant difference in the growth, urease production and compressive strength of mortar among the media suggesting LML as an alternative source for standard media. This study demonstrates that microbial calcite acts as a sealing agent for filling the gaps or cracks and fissures in constructed facilities and natural formations alike.

Keywords

Sporosarcina pasteurii Bacillus pasteurii Calcite Urease Lactose mother liquor Compressive strength 

References

  1. 1.
    APHA (American Public Health Association) (1989) Standard methods for the examination of water and wastewater, 7th edn. American Public Health Association, Washington, DCGoogle Scholar
  2. 2.
    Bachmeier KL, Williams AE, Warmington JR, Bang SS (2002) Urease activity in microbiologically-induced calcite precipitation. J Biotechnol 93:171–181. doi:10.1016/S0168-1656(01)00393-5 PubMedCrossRefGoogle Scholar
  3. 3.
    Bang SS, Galinat JK, Ramakrishnan V (2001) Calcite precipitation induced by polyurethane-immobilized Bacillus pasteurii. Enzyme Microb Technol 28:404–409. doi:10.1016/S0141-0229(00)00348-3 PubMedCrossRefGoogle Scholar
  4. 4.
    Benini S, Rypniewski W, Wilson KS, Miletti S, Ciurli S, Mangani S (1999) A new proposal for urease mechanism based on the crystal structures of the native and inhibited enzyme from Bacillus pasteurii: why urea hydrolysis costs two nickels. Structure 7:205–216. doi:10.1016/S0969-2126(99)80026-4 PubMedCrossRefGoogle Scholar
  5. 5.
    Burne RA, Chen RE (2001) Bacterial ureases in infectious diseases. Microbes Infect 2:533–542. doi:10.1016/S1286-4579(00)00312-9 CrossRefGoogle Scholar
  6. 6.
    Burne RA, Marquis RE (2000) Alkali production by oral bacteria and protection against dental caries. FEMS Microbiol Lett 193:1–6. doi:10.1111/j.1574-6968.2000.tb09393.x PubMedCrossRefGoogle Scholar
  7. 7.
    Ciurli S, Marzadori C, Benini S, Deiana S, Gessa C (1996) Urease from the soil bacterium: Bacillus pasteurii immobilization on Ca-polygalacturonate. Soil Biol Biochem 28:811–817. doi:10.1016/0038-0717(96)00020-X CrossRefGoogle Scholar
  8. 8.
    Dick J, De Windt W, De Graef B, Saveyn H, Van der Meeren P, De Belie N, Verstraete W (2006) Bio-deposition of a calcium carbonate layer on degraded limestone by Bacillus species. Biodegradation 17:357–367. doi:10.1007/s10532-005-9006-x PubMedCrossRefGoogle Scholar
  9. 9.
    Ferris FG, Stehmeier LG (1992) Bacteriogenic mineral plugging. USA patent US5143155Google Scholar
  10. 10.
    Ghosh P, Mandal S, Chattopadhyay BD, Pal S (2005) Use of microorganism to improve the strength of cement mortar. Cement Concr Res 35:1980–1983. doi:10.1016/j.cemconres.2005.03.005 CrossRefGoogle Scholar
  11. 11.
    Gollapudi UK, Knutson CL, Bang SS, Islam MR (1995) A new method for controlling leaching through permeable channels. Chemosphere 30:695–705. doi:10.1016/0045-6535(94)00435-W CrossRefGoogle Scholar
  12. 12.
    Hammes F, Seka A, De Knijf S, Verstraete W (2003) A novel approach to calcium removal from calcium-rich industrial wastewater. Water Res 37:699–704. doi:10.1016/S0043-1354(02)00308-1 PubMedCrossRefGoogle Scholar
  13. 13.
    Kantzas A, Ferris FG, Stehmeier L, Marentette DF, Jha KN, Mourits FM (1992) A novel method of sand consolidation through bacteriogenic mineral plugging (CIM 92-46). In: Proceedings of the CIM annual technical conference 1992, vol 2, pp. 1–15. Petroleum Society of CIM, Calgary, CanadaGoogle Scholar
  14. 14.
    Kawaguchi T, Decho AW (2002) A laboratory investigation of cyanobacterial extracellular polymeric secretions (EPS) in influencing CaCO3 polymorphism. J Cryst Growth 240:230–235. doi:10.1016/S0022-0248(02)00918-1 CrossRefGoogle Scholar
  15. 15.
    Kristiansen B (2001) Process economics. In: Ratledge C, Kristiansen B (eds) Biotechnology, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  16. 16.
    McConnaughey TA, Whelan FF (1997) Calcification generates protons for nutrient and bicarbonate uptake. Earth Sci Rev 42:95–117. doi:10.1016/S0012-8252(96)00036-0 CrossRefGoogle Scholar
  17. 17.
    Mobley HLT, Hausinger RP (1989) Microbial ureases: significance, regulation and molecular characterisation. Microbiol Rev 53:85–108PubMedGoogle Scholar
  18. 18.
    Mobley HLT, Island MD, Hausinger RP (1995) Molecular biology of microbial ureases. Microbiol Rev 59:451–480PubMedGoogle Scholar
  19. 19.
    Muynck WD, Cox K, Belie ND, Verstraete W (2008) Bacterial carbonate precipitation as an alternative surface treatment for concrete. Construct Build Mater 22:875–885. doi:10.1016/j.conbuildmat.2006.12.011 CrossRefGoogle Scholar
  20. 20.
    Natarajan KR (1995) Kinetic study of the enzyme urease from Dolichos biflorus. J Chem Educ 72:556–557CrossRefGoogle Scholar
  21. 21.
    Nemati M, Voordouw G (2003) Modification of porous media permeability, using calcium carbonate produced enzymatically in situ. Enz Microb Tech 33:635–642. doi:10.1016/S0141-0229(03)00191-1 CrossRefGoogle Scholar
  22. 22.
    Ramachandran SK, Ramakrishnan V, Bang SS (2001) Remediation of concrete using microorganisms. Am Concr Inst Mater J 98:3–9Google Scholar
  23. 23.
    Ramakrishnan V, Bang SS, Deo KS (1998) A novel technique for repairing cracks in high performance concrete using bacteria. In: Proceedings of international conference on high performance high strength concrete. Perth, Australia, pp 597–618Google Scholar
  24. 24.
    Rodriguez-Navarro C, Rodriguez-Gallego M, Ben Chekroun K, Gonzalez-Munoz MT (2003) Conservation of ornamental stone by Myxococcus xanthus-induced carbonate biomineralization. Appl Environ Microbiol 69:2182–2193. doi:10.1128/AEM.69.4.2182-2193.2003 PubMedCrossRefGoogle Scholar
  25. 25.
    Silver S, Toth K, Scribner H (1975) Facilitated transport of calcium by cells and subcellular membranes of Bacillus subtilis and Escherichia coli. J Bacteriol 12:880–885Google Scholar
  26. 26.
    Stocks-Fischer S, Galinat JK, Bang SS (1999) Microbiological precipitation of CaCO3. Soil Biol Biochem 31:1563–1571. doi:10.1016/S0038-0717(99)00082-6 CrossRefGoogle Scholar
  27. 27.
    Tiano P, Biagiotti L, Mastromei G (1999) Bacterial bio-mediated calcite precipitation for monumental stones conservation: methods of evaluation. J Microbiol Methods 36:138–145. doi:10.1016/S0167-7012(99)00019-6 CrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology 2008

Authors and Affiliations

  • V. Achal
    • 1
  • A. Mukherjee
    • 1
  • P. C. Basu
    • 2
  • M. S. Reddy
    • 1
  1. 1.Department of BiotechnologyThapar UniversityPatialaIndia
  2. 2.Atomic Energy Regulatory BoardMumbaiIndia

Personalised recommendations