Skip to main content
Log in

A gene located downstream of the clavulanic acid gene cluster in Streptomyces clavuligerus ATCC 27064 encodes a putative response regulator that affects clavulanic acid production

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Three open reading frames denoted as orf21, orf22, and orf23 were identified from downstream of the currently recognized gene cluster for clavulanic acid biosynthesis in Streptomyces clavuligerus ATCC 27064. The new orfs were annotated after in silico analysis as genes encoding a putative sigma factor, a sensor kinase, and a response regulator. The roles of the individual genes were explored by disruption of the corresponding orfs, and the morphological and antibiotic production phenotypes of the resulting mutants were compared. In orf21 and orf22 mutants, no growth or morphological differences were noted, but modest reduction of cephamycin C (orf21), or both cephamycin C and clavulanic acid production (orf22) compared with wild-type, were observed. In orf23 mutant, cell growth and sporulation was retarded, and clavulanic acid and cephamycin C production were reduced to 40 and 47% of wild-type levels, respectively. Conversely, overexpression of orf23 caused precocious hyperproduction of spores on solid medium, and antibiotic production was increased above the levels seen in plasmid control cultures. Transcriptional analyses were also carried out on orf23 and showed that mutation had little effect on transcription of genes associated with the early stages of cephamycin C or clavulanic acid production but transcription of claR, which regulates the late stages of clavulanic acid production, was reduced in orf23 mutants. These observations suggest that the orf23 product may enable S. clavuligerus to respond to environmental changes by altering cell growth and differentiation. In addition, the effects of ORF23 on growth might indirectly regulate the biosynthesis of secondary metabolites such as clavulanic acid and cephamycin C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alexander D, Jensen SE (1998) Investigation of the Streptomyces clavuligerus cephamycin gene cluster and its regulation by the CcaR. J Bacteriol 180:4068–4079

    PubMed  CAS  Google Scholar 

  2. Aravind L, Ponting CP (1999) The cytoplasmic helical linker domain of receptor histidine kinase and methyl-accepting proteins is common to many prokaryotic signaling proteins. FEMS Microbiol Lett 176:111–116. doi:10.1016/S0378-1097(99)00197-4; doi:10.1111/j.1574-6968.1999.tb13650.x

    Google Scholar 

  3. Bentley SD, Chater KF, Cerdeño-Tárraga AM, Challis GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D, Bateman A, Brown S, Chandra G, Chen CW, Collins M, Cronin A, Fraser A, Goble A, Hidalgo J, Hornsby T, Howarth S, Huang CH, Kieser T, Larke L, Murphy L, Oliver K, O’Neil S, Rabbinowitsch E, Rajandream MA, Rutherford K, Rutter S, Seeger K, Saunders D, Sharp S, Squares R, Squares S, Taylor K, Warren T, Wietzorrek A, Woodward J, Barrell BG, Parkhill J, Hopwood DA (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141–147. doi:10.1038/417141a

    Article  PubMed  Google Scholar 

  4. Brian P, Riggle PJ, Santos RA, Champness WC (1996) Global negative regulation of Streptomyces coelicolor antibiotic synthesis mediated by an absA-encoded putative signal transduction system. J Bacteriol 178:3221–3231

    PubMed  CAS  Google Scholar 

  5. Brown AG, Butterworth D, Cole M, Hanscomb G, Hood JD, Reading C, Rolinson GN (1976) Naturally occurring β-lactamase inhibitors with antibacterial activity. J Antibiot 29:668–669

    PubMed  CAS  Google Scholar 

  6. Campbell EA, Muzzin O, Chlenov M, Sun JL, Olson CA, Weinman O, Trester-Zedlitz ML, Darst SA (2002) Structure of the bacterial RNA polymerase promoter specificity sigma subunit. Mol Cell 9:527–539. doi:10.1016/S1097-2765(02)00470-7

    Article  PubMed  CAS  Google Scholar 

  7. Chang HM, Chen MY, Shieh YT, Bibb MJ, Chen CW (1996) The cutRS signal transduction system of Streptomyces lividans represses the biosynthesis of the polyketide antibiotic actinorhodin. Mol Microbiol 21:1075–1085

    PubMed  CAS  Google Scholar 

  8. Chater KF, Bibb MJ (1997) Regulation of bacterial antibiotic production. In: Kleinkauf H, von Dohren H (eds) Products of secondary metabolism, biotechnology, vol 6. VCH, Weinheim, pp 57–105

    Google Scholar 

  9. Dutta R, Inouye M (2000) GHKL, an emergent ATPase/kinase superfamily. Trends Biochem Sci 25:24–28. doi:10.1016/S0968-0004(99)01503-0

    Article  PubMed  CAS  Google Scholar 

  10. Gust B, Challis GL, Fowler K, Kieser T, Chater KF (2003) PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci USA 100:1541–1546. doi:10.1073/pnas.0337542100

    Article  PubMed  CAS  Google Scholar 

  11. Hutchings MI, Hoskisson PA, Chandra G, Buttner MJ (2004) Sensing and responding to diverse extracellular signals? Analysis of the sensor kinases and response regulators of Streptomyces coelicolor A3(2). Microbiology 150:2795–2806. doi:10.1099/mic.0.27181-0

    Article  PubMed  CAS  Google Scholar 

  12. Ishizuka H, Horinouchi S, Kieser HM, Hopwood DA, Beppu T (1992) A putative two-component regulatory system involved in secondary metabolism in Streptomyces spp. J Bacteriol 23:7585–7594

    Google Scholar 

  13. Jensen SE, Elder KJ, Aidoo KA, Paradkar AS (2000) Enzymes catalyzing the early steps of clavulanic acid biosynthesis are encoded by two sets of paralogous genes in Streptomyces clavuligerus. Antimicrob Agents Chemother 44:720–726. doi:10.1128/AAC.44.3.720-726.2000

    Article  PubMed  CAS  Google Scholar 

  14. Jensen SE, Paradkar AS, Mosher RH, Anders C, Beatty PH, Brumlik MJ, Griffin A, Barton B (2004) Five additional genes are involved in clavulanic acid biosynthesis in Streptomyces clavuligerus. Antimicrob Agents Chemother 48:192–202. doi:10.1128/AAC.48.1.192-202.2004

    Article  PubMed  CAS  Google Scholar 

  15. Jin W, Kim HK, Kim JY, Kang SG, Lee SH, Lee KJ (2004) Cephamycin C production is regulated by relA and rsh genes in Streptomyces clavuligerus ATCC27064. J Biotechnol 114:81–87. doi:10.1016/j.jbiotec.2004.06.010

    Article  PubMed  CAS  Google Scholar 

  16. Kenney LJ (2002) Structure/function relationships in OmpR and other winged-helix transcription factors. Curr Opin Microbiol 5:135–141. doi:10.1016/S1369-5274(02)00310-7

    Article  PubMed  CAS  Google Scholar 

  17. Khaleeli N, Li R, Townsend CA (1999) Origin of the β-lactam carbons in clavulanic acid from an unusual thiamine pyrophosphate-mediated reaction. J Am Chem Soc 121:9223–9224. doi:10.1021/ja9923134

    Article  CAS  Google Scholar 

  18. Kieser T, Bibb MJ, Butter MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces genetics. The John Innes Foundation, Norwich

    Google Scholar 

  19. Li R, Khaleeli N, Townsend CA (2000) Expansion of the clavulanic acid gene cluster: identification and in vivo functional analysis of three new genes required for biosynthesis of clavulanic acid by Streptomyces clavuligerus. J Bacteriol 182:4087–4095. doi:10.1128/JB.182.14.4087-4095.2000

    Article  PubMed  CAS  Google Scholar 

  20. Malmberg LH, Hu WS, Sherman DH (1993) Precusor flux control through targeted chromosomal insertion of the lysine ε-aminotransferase (lat) gene in cephamycin C biosynthesis. J Bacteriol 175:6916–6924

    PubMed  CAS  Google Scholar 

  21. Mellado E, Lorenzana LM, Rodríguez-Sáiz M, Díez B, Liras P, Barredo JL (2002) The clavulanic acid biosynthetic cluster of Streptomyces clavuligerus: genetic organization of the region upstream of the car gene. Microbiology 148:1427–1438

    PubMed  CAS  Google Scholar 

  22. Netolitzky DJ, Wu X, Jensen SE, Roy KL (1995) Giant linear plasmids of β-lactam antibiotic producing Streptomyces. FEMS Microbiol Lett 131:27–34. doi:10.1016/0378-1097(95)00230-3

    PubMed  CAS  Google Scholar 

  23. Obermann WM, Sondermann H, Russo AA, Pavletich NP, Hartl FU (1998) In vivo function of Hsp90 is dependent on ATP binding and ATP hydrolysis. J Cell Biol 143:901–910. doi:10.1083/jcb.143.4.901

    Article  PubMed  CAS  Google Scholar 

  24. Paradkar AS, Aidoo KA, Jensen SE (1998) A pathway-specific transcriptional activator regulates late steps of clavulanic acid biosynthesis in Streptomyces clavuligerus. Mol Microbiol 27:831–843. doi:10.1046/j.1365-2958.1998.00731.x

    Article  PubMed  CAS  Google Scholar 

  25. Paradkar AS, Mosher RH, Anders C, Griffin A, Griffin J, Hughes C, Greaves P, Barton B, Jensen SE (2001) Applications of gene replacement technology to Streptomyces clavuligerus strain development for clavulanic acid production. Appl Environ Microbiol 67:2292–2297. doi:10.1128/AEM.67.5.2292-2297.2001

    Article  PubMed  CAS  Google Scholar 

  26. Pérez-Llarena FJ, Liras P, Rodríguez-García A, Martín JF (1997) A regulatory gene (ccaR) required for cephamycin and clavulanic acid production in Streptomyces clavuligerus: amplification results in overproduction of both β-lactam compounds. J Bacteriol 179:2053–2059

    PubMed  Google Scholar 

  27. Pérez-Redondo R, Rodríguez-García A, Martín JF, Liras P (1998) The claR gene of Streptomyces clavuligerus, encoding a LysR-type regulatory protein controlling clavulanic acid biosynthesis, is linked to the clavulanate-9-aldehyde reductase (car) gene. Gene 211:311–321. doi:10.1016/S0378-1119(98)00106-1

    Article  PubMed  Google Scholar 

  28. Pérez-Redondo R, Rodríguez-García A, Martín JF, Liras P (1999) Deletion of the pyc gene blocks clavulanic acid biosynthesis except in glycerol-containing medium: evidence for two different genes in formation of the C3 unit. J Bacteriol 181:6922–6928

    PubMed  Google Scholar 

  29. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  30. Sola-Landa A, Moura RS, Martín JF (2003) The two component PhoR-PhoP system controls both primary metabolism and secondary metabolite biosynthesis in Streptomyces lividans. Proc Natl Acad Sci USA 100:6133–6138. doi:10.1073/pnas.0931429100

    Article  PubMed  CAS  Google Scholar 

  31. Solá M, Gomis-Rüth FX, Serrano L, González A, Coll M (1999) Three-dimensional crystal structure of the transcription factor PhoB receiver domain. J Mol Biol 285:675–687. doi:10.1006/jmbi.1998.2326

    Article  PubMed  Google Scholar 

  32. Song JY, Kim ES, Kim DW, Jensen SE, Lee KJ (2008) Functional effects of increased copy number of the gene encoding proclavaminate amidino hydrolase on clavulanic acid production in Streptomyces clavuligerus ATCC 27064. J Microbiol Biotechnol 3:417–426

    Google Scholar 

  33. Tahlan K, Park HU, Jensen SE (2004) Three unlinked gene clusters are involved in clavam metabolite biosynthesis in Streptomyces clavuligerus. Can J Microbiol 50:803–810. doi:10.1139/w04-070

    Article  PubMed  CAS  Google Scholar 

  34. Tahlan K, Park HU, Wong A, Beatty PH, Jensen SE (2004) Two sets of paralogous genes encode the enzymes involved in the early stages of clavulanic acid and clavam biosynthesis in Streptomyces clavuligerus. Antimicrob Agents Chemother 48:930–939. doi:10.1128/AAC.48.3.930-939.2004

    Article  PubMed  CAS  Google Scholar 

  35. Tomomori C, Tanaka T, Dutta R, Park H, Saha SK, Zhu Y, Ishima R, Liu D, Tong KI, Kurokawa H, Qian H, Inouye M, Ikura M (1999) Solution structure of the homodimeric core domain of Escherichia coli histidine kinase EnvZ. Nat Struct Biol 6:729–734. doi:10.1038/11495

    Article  PubMed  CAS  Google Scholar 

  36. Ward JM, Hodgson JE (1993) The biosynthetic genes for clavulanic acid and cephamycin production occur as a ‘supercluster’ in three Streptomyces. FEMS Microbiol Lett 110:239–242. doi:10.1111/j.1574-6968.1993.tb06326.x

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the KICOS through a grant provided by the Korean Ministry of Science & Technology (MOST) in 2007 (K20726000001-07B0100-00110), for collaborative research with the ActinoGEN project (IP005224) in the EU. The authors J. Y. Song, E. S. Kim, and D. W. Kim were supported by the second stage of the Brain Korea 21 project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kye Joon Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, J.Y., Kim, E.S., Kim, D.W. et al. A gene located downstream of the clavulanic acid gene cluster in Streptomyces clavuligerus ATCC 27064 encodes a putative response regulator that affects clavulanic acid production. J Ind Microbiol Biotechnol 36, 301–311 (2009). https://doi.org/10.1007/s10295-008-0499-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-008-0499-2

Keywords

Navigation