Skip to main content
Log in

Cyanuric acid biodegradation by a mixed bacterial culture of Agrobacterium tumefaciens and Acinetobacter sp. in a packed bed biofilm reactor

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Cyanuric acid (1,3,5-triazine-2,4,6-triol [OOOT]) is a common biodegradation byproduct of triazinic herbicides, frequently accumulated in soils or water when supplementary carbon sources are absent. A binary bacterial culture able to degrade OOOT was selected through a continuous selection process accomplished in a chemostat fed with a mineral salt (MS) medium containing cyanuric acid as the sole carbon and nitrogen source. By sequence comparison of their 16S rDNA amplicons, bacterial strains were identified as Agrobacterium tumefaciens, and Acinetobacter sp. When the binary culture immobilized in a packed bed reactor (PBR) was fed with MS medium containing OOOT (50 mg L−1), its removal efficiencies were about 95%; when it was fed with OOOT plus glucose (120 mg L−1) as a supplementary carbon source, its removal efficiencies were closer to 100%. From sessile cells, attached to PBR porous support, or free cells present in the outflowing medium, DNA was extracted and used for Random Amplification of Polymorphic DNA analysis. Electrophoretic patterns obtained were compared to those of pure bacterial strains, a clear predominance of A. tumefaciens in PBR was observed. Although in continuous suspended cell culture, a stable binary community could be maintained, the attachment capability of A. tumefaciens represented a selective advantage over Acinetobacter sp. in the biofilm reactor, favoring its predominance in the porous stone support.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sullivan KB, Spence KM (2003) Effect of sublethal concentration of atrazine and nitrate on metamorphosis of the Africa clawed frog. Environ Toxicol Chem 22:627–635. doi:10.1897/1551-5028(2003)022<0627:EOSCOA>2.0.CO;2

    Article  PubMed  CAS  Google Scholar 

  2. Gammon DW, Aoldous CN, Carr WC, Sanborn JN, Pfeifer KF (2005) A risk assessment of atrazine use in California: human health and ecological aspects. Pest Manag Sci 61:331–355. doi:10.1002/ps.1000

    Article  PubMed  CAS  Google Scholar 

  3. Office of Pesticide Programs (2000) Pesticide ecotoxicity database. Environmental fate and effects division. USEPA, Washington, DC

    Google Scholar 

  4. Loeb HA, Kelly WH (1963) Acute oral toxicity of 1,496 chemicals force-fed to carp. Spec. Sci. Rep. Fish. No. 471. Fish Wildl. Serv. U.S.D.I, Washington, DC, p 124

    Google Scholar 

  5. Applegate VC, Howell JH, Hall AE Jr, Smith MA (1957) Toxicity of 4,346 chemicals to larval lampreys and fishes. Spec. Sci. Rep. Fish. No. 207. Fish Wildl. Serv. U.S.D.I, Washington, DC, p 157

    Google Scholar 

  6. Magnuson ML, Kelty CA, Cantú R (2001) Stable association complex electrospray mass spectrometry for the determination of cyanuric acid. J Am Soc Mass Spectrom 12:1085–1091. doi:10.1016/S1044-0305(01)00292-6

    Article  PubMed  CAS  Google Scholar 

  7. Panderi I (2003) Porous graphitized carbon columns in liquid chromatography. In: Cazes J (ed) The encyclopedia of chromatography. Marcel Dekker, Inc, New York Electronic Version

    Google Scholar 

  8. Shapir N, Mongodin EF, Sadowsky MJ, Daugherty SC, Nelson KE, Wackett LP (2007) Evolution of catabolic pathways: genomic insights into microbial s-triazine metabolism. J Bacteriol 189:674–682. doi:10.1128/JB.01257-06

    Article  PubMed  CAS  Google Scholar 

  9. Sisodia SS, Weber AS, Jensen JN (1996) Continuous culture biodegradation of simazine’s chemical oxidation products. Water Res 30:2055–2064. doi:10.1016/0043-1354(96)00099-1

    Article  CAS  Google Scholar 

  10. Chan CY, Tao S, Dawson R, Wong PK (2004) Treatment of atrazine by integrating photocatalytic and biological processes. Environ Pollut 131:45–54. doi:10.1016/j.envpol.2004.02.022

    Article  PubMed  CAS  Google Scholar 

  11. Watanabe N, Horikoshi N, Hidaka H, Serpone N (2005) On the recalcitrant nature of the triazinic ring species, cyanuric acid, to degradation in Fenton solution and in UV-illuminated TiO2 (naked) and fluorinated TiO2 aqueous dispersions. J Photochem Photobiol Chem 174:229–238. doi:10.1016/j.jphotochem.2005.03.013

    Article  CAS  Google Scholar 

  12. Rodríguez EM, Álvarez PM, Rivas FJ, Beltrán FJ (2004) Wet peroxide degradation of atrazine. Chemosphere 54:71–78. doi:10.1016/S0045-6535(03)00701-X

    Article  PubMed  CAS  Google Scholar 

  13. Parra S, Stanca SE, Guasaquillo I, Thampi KR (2004) Photocatalytic degradation of atrazine using suspended and supported TiO2. Appl Catal B Environ 51:107–116. doi:10.1016/j.apcatb.2004.01.021

    Article  CAS  Google Scholar 

  14. Johnson DC, Feng J, Houk LL (2000) Direct electrochemical degradation of organic wastes in aqueous media. Electrochim Acta 46:323–330. doi:10.1016/S0013-4686(00)00588-0

    Article  CAS  Google Scholar 

  15. Horikoshi S, Hidaka H (2003) Non-degradable triazine substrates of atrazine and cyanuric acid hydrothermally and in supercritical water under the UV-illuminated photocatalytic cooperation. Chemosphere 51:139–142. doi:10.1016/S0045-6535(02)00786-5

    Article  PubMed  CAS  Google Scholar 

  16. Farré MJ, Franch MI, Malato S, Ayllón JA, Peral J, Doménech X (2005) Degradation of some biorecalcitrant pesticides by homogeneous and heterogeneous photocatalytic ozonation. Chemosphere 58:1127–1133. doi:10.1016/j.chemosphere.2004.09.064

    Article  PubMed  CAS  Google Scholar 

  17. Ikehata K, El-Din MG (2006) Aqueous pesticide degradation by hydrogen peroxide/ultraviolet irradiation and Fenton-type advanced oxidation processes: a review. J Environ Eng Sci 5:81–135. doi:10.1139/s05-046

    Article  CAS  Google Scholar 

  18. Jesse JA, Benoit RE, Hendricks AC, Allen GC, Neal JL (1983) Anaerobic degradation of cyanuric acid, cysteine and atrazine by a facultative anaerobic bacterium. Appl Environ Microbiol 45:97–102

    Google Scholar 

  19. Gonzalez-Barreiro O, Rioboo C, Herrero C, Cid A (2006) Removal of triazine herbicides from freshwater systems using photosynthetic microorganisms. Environ Pollut 144:266–271. doi:10.1016/j.envpol.2005.12.014

    Article  PubMed  CAS  Google Scholar 

  20. Feakin SJ, Blackburn E, Burns RG (1995) Inoculation of granular activated carbon in a fixed bed with S-triazine-degrading bacteria as a water treatment process. Water Res 29:819–825. doi:10.1016/0043-1354(94)00209-P

    Article  CAS  Google Scholar 

  21. Saez F, Pozo C, Gomez MA, Martinez-Toledo MV, Rodelas B, Gonzalez-Lopez J (2006) Growth and denitrifying activity of Xanthobacter autotrophicus CECT 7064 in the presence of selected pesticides. Appl Microbiol Biotechnol 71:563–567. doi:10.1007/s00253-005-0182-8

    Article  PubMed  CAS  Google Scholar 

  22. Nishimura K, Yamamoto M, Nakagomi T, Takiguchi Y, Naganuma T, Uzuka Y (2002) Biodegradation of triazine herbicides on polyvinylalcohol gel plates by the soil yeast Lipomyces starkeyi. Appl Microbiol Biotechnol 58:848–852. doi:10.1007/s00253-002-0950-7

    Article  PubMed  CAS  Google Scholar 

  23. Fragoeiro S, Magan S (2005) Enzymatic activity, osmotic stress and degradation of pesticide mixtures in soil extract liquid broth inoculated with Phanerochaete chrysosporium and Trametes versicolor. Environ Microbiol 7:348–355. doi:10.1111/j.1462-2920.2005.00699.x

    Article  PubMed  CAS  Google Scholar 

  24. Grigg BC, Bischoff M, Turco RF (1997) Cocontaminant effects on degradation of triazine herbicides by a mixed microbial culture. J Agric Food Chem 45:995–1000. doi:10.1021/jf9604910

    Article  CAS  Google Scholar 

  25. Saldick J (1974) Biological treatment of plant waste streams to remove cyanuric acid. US Patent 3,926,795

  26. Zeyer J, Hutter R, Mayer P (1981) Process for the degradation of cyanuric acid. US Patent 4,274,955

  27. Bagnall EA, Gurvitch MM, Horner RL (1984) Biological decomposition of cyanuric acid. UK Patent GB 2,127,006 A

  28. Cook AM Hütter R. (1988) Process for the degradation of s-triazine derivatives in aqueous solutions. US Patent 4,745,064

  29. Osadchaia AI, Kudriavtsev VA, Safronova LA, Smirnov VV (1999) The effect of the nutritional sources on the synthesis of exopolysaccharides and amino acids by Bacillus subtilis strains. Mikrobiol Z 61:56–63

    PubMed  CAS  Google Scholar 

  30. Atkinson B, Mavituna F (1983) Biochemical engineering and biotechnology handbook. Macmillan Publishers Ltd, Surrey

    Google Scholar 

  31. Relman DA (1993) Universal bacterial 16S rDNA amplification and sequencing. In: Persing HD, Smith FT, Tenover CF, White JT (eds) Diagnostic molecular microbiology. Principles and applications. AMS, Washington, DC

    Google Scholar 

  32. Felske A, Engelen B, Nübel U, Backhaus H (1996) Direct ribosome isolation from soil to extract bacterial rRNA for community analysis. Appl Environ Microbiol 62:4162–4167

    PubMed  CAS  Google Scholar 

  33. Renders N, van Belkum A, Barth A, Goessens W, Mouton J, Verbrugh H (1996) Typing of Pseudomonas aeruginosa strains from patients with cystic fibrosis: phenotyping versus genotyping. Clin Microbiol Infect 1:261–265

    PubMed  Google Scholar 

  34. Hodge DS, Devinny JS (1995) Modeling removal of air contaminants by biofiltration. J Environ Eng 121:21–32. doi:10.1061/(ASCE)0733-9372(1995)121:1(21)

    Article  CAS  Google Scholar 

  35. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin–phenol reagents. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  36. Karns JS (1999) Gene sequence and properties of an s-triazine ring-cleavage enzyme from Pseudomonas sp. strain NRRLB-12227. Appl Environ Microbiol 65:3512–3517

    PubMed  CAS  Google Scholar 

  37. Strong CL, Rosendahl C, Johnson G, Sadowsky JM, Wacket LP (2002) Arthrobacter aurescens TC1 metabolizes diverse s-triazine ring compounds. Appl Environ Microbiol 68:5973–5980. doi:10.1128/AEM.68.12.5973-5980.2002

    Article  PubMed  CAS  Google Scholar 

  38. HACH-Wastewater and biosolids analysis manual (1999) HACH Company, USA

  39. Fruchey I, Shapir N, Sadowsky MJ, Wackett LP (2003) On the origins of cyanuric acid hydrolase: purification, substrates and prevalence of AtzD from Pseudomonas sp. strain ADP. Appl Environ Microbiol 69:3653–3657. doi:10.1128/AEM.69.6.3653-3657.2003

    Article  PubMed  CAS  Google Scholar 

  40. Kodama T, Ding L, Yoshida M, Yajima M (2001) Biodegradation of an s-triazine herbicide, simazine. J Mol Catal B Enzym 11:1073–1078. doi:10.1016/S1381-1177(00)00169-7

    Article  CAS  Google Scholar 

  41. Breedveld MW, Miller K (1994) Cyclic glucans of members of the family Rhizobiaceae. Microbiol Rev 58:145–161

    PubMed  CAS  Google Scholar 

  42. Williamson G, Damani K, Devenney P, Faulds CB, Morris VJ, Stevens BJH (1992) Mechanism of action of cyclic ß(1–2)-glucan synthetase from Agrobacterium tumefaciens: competition between cyclization and elongation reactions. J Bacteriol 174:7941–7947

    PubMed  CAS  Google Scholar 

  43. Baumann P, Duodoroff M, Stanier RY (1968) A study of Moraxella group. II. Oxidative-negative species (genus Acinetobacter). J Bacteriol 95:1520–1541

    PubMed  CAS  Google Scholar 

  44. Bergogne-Bérézin E, Towner KJ (1996) Acinetobacter spp. as nosocomial pathogens: microbiological, clinical and epidemiological features. Clin Microbiol Rev 9:148–165

    PubMed  Google Scholar 

  45. Gohl O, Friedrich A, Hoppert M, Averhoff B (2006) The thin pili of Acinetobacter sp. strain BD413 mediate adhesion to biotic and abiotic surfaces. Appl Environ Microbiol 72:1394–1401. doi:10.1128/AEM.72.2.1394-1401.2006

    Article  PubMed  CAS  Google Scholar 

  46. An D, Danhorn T, Fuqua C, Parsek MR (2006) Quorum sensing and motility mediate interactions between Pseudomonas aeruginosa and Agrobacterium tumefaciens in biofilm cocultures. Proc Natl Acad Sci USA 103:3828–3833. doi:10.1073/pnas.0511323103

    Article  PubMed  CAS  Google Scholar 

  47. Huang C-T, Peretti SW, Bryers JD (1994) Effects of medium carbon-to-nitrogen ratio on biofilm formation and plasmid stability. Biotechnol Bioeng 44:329–336. doi:10.1002/bit.260440310

    Article  PubMed  CAS  Google Scholar 

  48. Thompson LJ, Gray V, Lindsay D, von Holy A (2006) Carbon: nitrogen:phosphorus ratios influence biofilm formation by Enterobacter cloacae and Citrobacter freundii. J Appl Microbiol 101:1105–1113. doi:10.1111/j.1365-2672.2006.03003.x

    Article  PubMed  CAS  Google Scholar 

  49. Merritt PM, Danhorn T, Fuqua C (2007) Motility ans chemotaxis in Agrobacterium tumefaciens surface attachment and biofilm formation. J Bacteriol 189:8005–8014. doi:10.1128/JB.00566-07

    Article  PubMed  CAS  Google Scholar 

  50. Fuqua C (2008) Agrobacterium–host attachment and biofilm formation. In: Tzira T, Citovsky V (eds) Agrobacterium: from biology to biotechnology. Springer, New York

    Google Scholar 

  51. Jensen HL, Abdel-Ghaffer AS (1969) Cyanuric acid as nitrogen source for microorganisms. Arch Mikrobiol 67:1–5. doi:10.1007/BF00413674

    Article  PubMed  CAS  Google Scholar 

  52. Wolf DC, Martin JP (1975) Microbial decomposition of Ring-14C Atrazine, cyanuric acid, and 2-Chloro-4, 6-diamino-s-triazine. J Environ Qual 4:134–139

    Article  CAS  Google Scholar 

  53. Shiomi N, Yamaguchi Y, Nakai H, Fujita T, Katsuda T, Katoh S (2006) Degradation of cyanuric acid in soil by Pseudomonas sp. NRRL B-12227 using bioremediation with self-immobilization system. J Biosci Bioeng 102(3):206–209. doi:10.1263/jbb.102.206

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

S.P. Galíndez-Nájera and M.A. Llamas-Martínez, are holders of a research grant from PIFI-IPN. C. Juárez-Ramírez, N. Ruiz-Ordaz, D. Ahuatzi-Chacón, and J. Galíndez-Mayer, are holders of grants from COFAA-IPN, SIP-IPN, and SNI-Conacyt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Galíndez-Mayer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galíndez-Nájera, S.P., Llamas-Martínez, M.A., Ruiz-Ordaz, N. et al. Cyanuric acid biodegradation by a mixed bacterial culture of Agrobacterium tumefaciens and Acinetobacter sp. in a packed bed biofilm reactor. J Ind Microbiol Biotechnol 36, 275–284 (2009). https://doi.org/10.1007/s10295-008-0496-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-008-0496-5

Keywords

Navigation