Skip to main content
Log in

Degradation of 3-chlorobenzoate and phenol singly and in mixture by a mixed culture of two ortho-pathway-following Pseudomonas strains

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

The compatibility and efficiency of two ortho-cleavage pathway-following pseudomonads viz. the 3-chlorobenzoate (3-CBA)-degrader, Pseudomonas aeruginosa 3mT (3mT) and the phenol-degrader, P. stutzeri SPC-2 (SPC-2) in a mixed culture for the degradation of these substrates singly and simultaneously in mixtures was studied. Another phenol-degrading strain, Pseudomonas sp. SoPC-5 (SoPC-5) that utilizes a meta-cleavage mode also was tried in co-culture with 3mT. The former combination was found to be a better degrader of both the substrates when present alone. But, with inoculum levels of 0.15 mg cell dry wt each of 3mT/SPC-2 or 3mT/SoPC-5 growth with 2 mM each of 3-CBA and phenol was slow with a lag of 24 h and degradation being incomplete. However, with higher inocula in the ratios 1:1, 1:2, and 2:1, i.e., 0.3 + 0.3, 0.3 + 0.6, and 0.6 + 0.3 mg cell dry wt of 3mT and SPC-2, respectively complete degradation of both the substrates occurred. Degradation of 3-CBA was complete with the release of stoichiometric amounts of chloride (Cl) when concentrations of phenol/3-CBA were varied as 2:2, 2:4, and 4:2 mM, i.e., even when the concentration of the more toxic co-substrate 3-CBA was higher than phenol effective simultaneous degradation occurred at the inoculums ratio of 1:1 (0.3 mg dry cell wt. of each strain). These studies clearly indicated the better suitability of ortho-cleavage-utilizing strains as partners in a mixed culture than those follow different modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ahamad PYA, Kunhi AAM (1996) Degradation of phenol through ortho-cleavage pathway by Pseudomonas stutzeri strain SPC-2. Lett Appl Microbiol 22:26–29. doi:10.1111/j.1472-765X.1996.tb01101.x

    Article  Google Scholar 

  2. Ahamad PYA, Varadaraj MC, Kunhi AAM (1996) Isolation and characterisation of phenol and cresol degrading pseudomonads. In: Kahlon RS (ed) Perspectives in microbiology. National Agricultural Technology Information Centre, Ludhiana, pp 35–41

    Google Scholar 

  3. Ahamad PYA, Kunhi AAM (1999) Degradation of high concentrations of cresols by Pseudomonas sp. CP4. World J Microbiol Biotechnol 15:281–283. doi:10.1023/A:1008821120432

    Article  CAS  Google Scholar 

  4. Ahamad PYA, Kunhi AAM, Divakar S (2001) New metabolic pathway for o-cresol degradation by Pseudomonas sp. CP4 as evidenced by 1H NMR spectroscopic studies. World J Microbiol Biotechnol 17:371–377. doi:10.1023/A:1016611702882

    Article  CAS  Google Scholar 

  5. Ajith-Kumar PV, Gangadhara KP, Manilal P, Kunhi AAM (1998) Soil inoculation with Pseudomonas aeruginosa 3mT eliminates the inhibitory effect of 3-chloro- and 4-chlorobenzoate on tomato seed germination. Soil Biol Biochem 30:1053–1059. doi:10.1016/S0038-0717(97)00249-6

    Article  CAS  Google Scholar 

  6. Ajith-Kumar PV, Kunhi AAM (2000) Pathways for 3-chloro- and 4-chlorobenzoate degradation in Pseudomonas aeruginosa 3mT. Biodegradation 11:247–261. doi:10.1023/A:1011124220003

    Article  CAS  Google Scholar 

  7. Aksu Z (2005) Application of biosorption for the removal of organic pollutants: a review. Process Biochem 40:997–1026. doi:10.1016/j.procbio.2004.04.008

    Article  CAS  Google Scholar 

  8. Arensdorf JT, Focht DD (1995) A meta-cleavage pathway for 4-chlorobenzoate, an intermediate in the metabolism of 4-chlorobiphenyl by Pseudomonas cepacia P166. Appl Environ Microbiol 61:443–447

    PubMed  CAS  Google Scholar 

  9. Arnow LE (1937) Colorimetric determination of the components of 3,4-dihydroxy phenyl alanine-tyrosine mixtures. J Biol Chem 118:531–537

    CAS  Google Scholar 

  10. Babu KS, Ajith-Kumar PV, Kunhi AAM (1995) Simultaneous degradation of 3-chlorobenzoate and phenolic compounds by a defined mixed culture of Pseudomonas spp. World J Microbiol Biotechnol 11:148–152. doi:10.1007/BF00704636

    Article  CAS  Google Scholar 

  11. Babu KS, Ajith-Kumar PV, Kunhi AAM (1995) Mineralisation of phenol and its derivatives by Pseudomonas sp. strain CP4. World J Microbiol Biotechnol 11:661–664. doi:10.1007/BF00361012

    Article  CAS  Google Scholar 

  12. Bartels I, Knackmuss H-J, Reineke W (1984) Suicide inactivation of catechol 2,3-dioxygenase from Pseudomonas putida mt-2 by 3-halocatechols. Appl Environ Microbiol 47:500–505

    PubMed  CAS  Google Scholar 

  13. Bayly RC, Wigmore GJ (1973) Metabolism of phenol and cresols by mutants of Pseudomonas putida. J Bacteriol 113:1112–1120

    PubMed  CAS  Google Scholar 

  14. Bergmann JG, Sanik J Jr (1957) Determination of trace amounts of chlorine in naphtha. Anal Chem 29:241–243. doi:10.1021/ac60122a018

    Article  CAS  Google Scholar 

  15. Cenci G, Caldini G, Boari L (1999) Dioxygenase activity and relative behavior of Pseudomonas strains from soil in the presence of different aromatic compounds. World J Microbiol Biotechnol 15:41–46. doi:10.1023/A:1008868124715

    Article  Google Scholar 

  16. Chaudhry GR, Chapalamadugu S (1991) Biodegradation of halogenated organic compounds. Microbiol Rev 55:59–79

    PubMed  CAS  Google Scholar 

  17. Dagley S (1978) Pathway for the utilization of organic growth substrates. In: Gunsalus IC (ed) The bacteria, vol 6. Academic Press, London, pp 305–388

    Google Scholar 

  18. Dagley S, Gibson DT (1965) The bacterial degradation of catechol. Biochem J 95:466–474

    PubMed  CAS  Google Scholar 

  19. Dorn E, Knackmuss H-J (1978) Chemical structure and biodegradability of halogenated aromatic compounds. Substituent effects on 1,2-dioxygenation of catechol. Biochem J 174:85–94

    PubMed  CAS  Google Scholar 

  20. Fetzner S (1998) Bacterial dehalogenation. Appl Microbiol Biotechnol 50:633–657. doi:10.1007/s002530051346

    Article  PubMed  CAS  Google Scholar 

  21. Franck-Mokroß AC, Schmidt E (1998) Simultaneous degradation of chloro- and methyl-substituted aromatic compounds: competition between Pseudomonas strains using the ortho and meta pathway or the ortho pathway exclusively. Appl Microbiol Biotechnol 50:233–240. doi:10.1007/s002530051282

    Article  PubMed  Google Scholar 

  22. Haller HD, Finn RK (1979) Biodegradation of 3-chlorobenzoate and formation of black colour in the presence and absence of benzoate. Eur J Appl Microbiol Biotechnol 8:191–205. doi:10.1007/BF00506183

    Article  CAS  Google Scholar 

  23. Higson FK, Focht DD (1992) Utilisation of 3-chloro-2-methylbenzoic acid by Pseudomonas cepacia MB2 through the meta-fission pathway. Appl Environ Microbiol 58:2501–2504

    PubMed  CAS  Google Scholar 

  24. Hinteregger C, Leitner R, Loidl M, Ferschl A, Streichsbier F (1992) Degradation of phenol and phenolic compounds by Pseudomonas putida EKII. Appl Microbiol Biotechnol 37:252–259. doi:10.1007/BF00178180

    Article  PubMed  CAS  Google Scholar 

  25. Hollender J, Dott W, Hopp J (1994) Regulation of chloro- and methylphenol degradation in Comamonas testosteroni JH5. Appl Environ Microbiol 60:2330–2338

    PubMed  CAS  Google Scholar 

  26. Iwasaki I, Utsumi S, Ozawa T (1952) New colorimetric determination of chloride using mercuric thiocyanate and ferric ion. Bull Chem Soc Jpn 25:226. doi:10.1246/bcsj.25.226

    Article  CAS  Google Scholar 

  27. Kaschabek SR, Kasberg T, Muller D, Mars AE, Janssen DB, Reineke W (1998) Degradation of chloroaromatics: purification and characterization of a novel type of chlorocatechol 2,3-dioxygenase of Pseudomonas putida GJ31. J Bacteriol 180:296–302

    PubMed  CAS  Google Scholar 

  28. King RB, Long GM, Sheldon JK (1998) Practical environmental bioremediation: the field guide, 2nd edn. Lewis, Boca Raton

    Google Scholar 

  29. Klecka GM, Gibson DT (1981) Inhibition of catechol 2,3-dioxygenase from Pseudomonas putida by 3-chlorocatechol. Appl Environ Microbiol 41:1159–1165

    PubMed  CAS  Google Scholar 

  30. Lacoste RJ, Venable SH, Stone JC (1959) Modified 4-aminoantipyrene colorimetric method for phenols. Applications to an acrylic monomer. Anal Chem 31:1246–1249. doi:10.1021/ac60151a007

    Article  CAS  Google Scholar 

  31. Morsen A, Rehm HJ (1990) Degradation of phenol by a defined mixed culture immobilised by adsorption on activated carbon and sintered glass. Appl Microbiol Biotechnol 33:206–212. doi:10.1007/BF00176526

    Article  Google Scholar 

  32. Murray K, Duggleby CJ, Sala-Trepat JM, Williams PA (1972) The metabolism of benzoate and methyl benzoate via the meta-cleavage pathway by Pseudomonas arvilla mt-2. Eur J Biochem 28:301–310. doi:10.1111/j.1432-1033.1972.tb01914.x

    Article  PubMed  CAS  Google Scholar 

  33. Pettigrew CA, Haigler BE, Spain JC (1991) Simultaneous biodegradation of chlorobenzene and toluene by a Pseudomonas strain. Appl Environ Microbiol 57:157

    PubMed  CAS  Google Scholar 

  34. Reineke W, Knackmuss H-J (1988) Microbial degradation of halogenated aromatic compounds. Annu Rev Microbiol 42:263–287. doi:10.1146/annurev.mi.42.100188.001403

    Article  PubMed  CAS  Google Scholar 

  35. Rojo F, Pieper DH, Engesser KH, Kanackmuss H-J, Timmis KN (1987) Assemblage of ortho-cleavage route for simultaneous degradation of chloro- and methylaromatics. Science 238:1395–1398. doi:10.1126/science.3479842

    Article  PubMed  CAS  Google Scholar 

  36. Schlomann M (1994) Evolution of chlorocatechol catabolic pathways: conclusions to be drawn from comparisons of lactone hydrolases. Biodegradation 5:301–321. doi:10.1007/BF00696467

    Article  PubMed  CAS  Google Scholar 

  37. Schmidt E (1987) Response of a chlorophenols degrading mixed culture to changing loads of phenol, chlorophenol and cresol. Appl Microbiol Biotechnol 27:94–99. doi:10.1007/BF00257260

    Article  CAS  Google Scholar 

  38. Schmidt E, Hellwig M, Knackmuss H-J (1983) Degradation of chlorophenols by a defined mixed microbial community. Appl Environ Microbiol 46:1038–1044

    PubMed  CAS  Google Scholar 

  39. Taeger K, Knackmuss H-J, Schmidt E (1988) Biodegradability of mixtures of chloro- and methyl-substituted aromatics: simultaneous degradation of 3-chlorobenzoate and 3-methylbenzoate. Appl Microbiol Biotechnol 28:603–608. doi:10.1007/BF00250420

    Article  CAS  Google Scholar 

  40. Vidali M (2001) Bioremediation. An overview. Pure Appl Chem 73:1163–1172. doi:10.1351/pac200173071163

    Article  CAS  Google Scholar 

  41. Wasserfallen A, Rekik M, Harayama S (1991) A Pseudomonas putida strain able to degrade m-toluate in the presence of 3-chlorocatechol. Biotechnology 9:296–298. doi:10.1038/nbt0391-296

    Article  CAS  Google Scholar 

  42. Wieser M, Eberspächer J, Vogler B, Lingens F (1994) Metabolism of 4-chlorophenol by Azotobacter sp GP1: structure of the meta cleavage product of 4-chlorocatechol. FEMS Microbiol Lett 116:73–78. doi:10.1111/j.1574-6968.1994.tb06678.x

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Director, CFTRI, Mysore, India for the facilities provided and for the permission to publish the data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. M. Kunhi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jayachandran, V.P., Kunhi, A.A.M. Degradation of 3-chlorobenzoate and phenol singly and in mixture by a mixed culture of two ortho-pathway-following Pseudomonas strains. J Ind Microbiol Biotechnol 36, 219–227 (2009). https://doi.org/10.1007/s10295-008-0488-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-008-0488-5

Keywords

Navigation