Skip to main content

Advertisement

Log in

Application of acetate buffer in pH adjustment of sorghum mash and its influence on fuel ethanol fermentation

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

A 2 M sodium acetate buffer at pH 4.2 was tried to simplify the step of pH adjustment in a laboratory dry-grind procedure. Ethanol yields or conversion efficiencies of 18 sorghum hybrids improved significantly with 2.0–5.9% (3.9% on average) of relative increases when the method of pH adjustment changed from traditional HCl to the acetate buffer. Ethanol yields obtained using the two methods were highly correlated (R 2 = 0.96, P < 0.0001), indicating that the acetate buffer did not influence resolution of the procedure to differentiate sorghum hybrids varying in fermentation quality. Acetate retarded the growth of Saccharomyces cerevisiae, but did not affect the overall fermentation rate. With 41–47 mM of undissociated acetic acid in mash of a sorghum hybrid at pH 4.7, rates of glucose consumption and ethanol production were inhibited during exponential phase but promoted during stationary phase. The maximum growth rate constants (μ max) were 0.42 and 0.32 h−1 for cells grown in mashes with pH adjusted by HCl and the acetate buffer, respectively. Viable cell counts of yeast in mashes with pH adjusted by the acetate buffer were 36% lower than those in mashes adjusted by HCl during stationary phase. Coupled to a 5.3% relative increase in ethanol, a 43.6% relative decrease in glycerol was observed, when the acetate buffer was substituted for HCl. Acetate helped to transfer glucose to ethanol more efficiently. The strain tested did not use acetic acid as carbon source. It was suggested that decreased levels of ATP under acetate stress stimulate glycolysis to ethanol formation, increasing its yield at the expense of biomass and glycerol production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. AACC International (2000) Approved methods of the American association of cereal chemists, 10th edn. Methods 44-15A and 76-13. AACC International, St Paul

  2. Abbott DA, Ingledew WM (2004) Buffering capacity of whole corn mash alters concentrations of organic acids required to inhibit growth of Saccharomyces cerevisiae and ethanol production. Biotechnol Lett 26:1313–1316. doi:10.1023/B:BILE.0000044924.76429.71

    Article  PubMed  CAS  Google Scholar 

  3. Bideaux C, Alfenore S, Cameleyre X, Molina-Jouve C, Uribelarrea JL, Guillouet SE (2006) Minimization of glycerol production during the high-performance fed-batch ethanolic fermentation process in Saccharomyces cerevisiae, using a metabolic model as a prediction tool. Appl Environ Microbiol 72:2134–2140. doi:10.1128/AEM.72.3.2134-2140.2006

    Article  PubMed  CAS  Google Scholar 

  4. Cronwright GR, Rohwer JM, Prior BA (2002) Metabolic control analysis of glycerol synthesis in Saccharomyces cerevisiae. Appl Environ Microbiol 68:4448–4456. doi:10.1128/AEM.68.9.4448-4456.2002

    Article  PubMed  CAS  Google Scholar 

  5. Devantier R, Pedersen S, Olsson L (2005) Characterization of very high gravity ethanol fermentation of corn mash. Effect of glucoamylase dosage, pre-saccharification and yeast strain. Appl Microbiol Biotechnol 68:622–629. doi:10.1007/s00253-005-1902-9

    Article  PubMed  CAS  Google Scholar 

  6. Domberk KM, Ingram LO (1987) Ethanol production during batch fermentation with Saccharomyces cerevisiae: changes in glycolytic enzymes and internal pH. Appl Environ Microbiol 53:1286–1291

    Google Scholar 

  7. Freese E, Sheu CW, Galliers E (1973) Function of lipophilic acids as antimicrobial food additives. Nature 24:321–325. doi:10.1038/241321a0

    Article  Google Scholar 

  8. Imai T, Ohno T (1995) Measurement of yeast intracellular pH by image processing and the change it undergoes during growth phase. J Biotechnol 38:165–172. doi:10.1016/0168-1656(94)00130-5

    Article  PubMed  CAS  Google Scholar 

  9. Imai T, Ohno T (1995) The relationship between viability and intracellular pH in the yeast Saccharomyces cerevisiae. Appl Environ Microbiol 61:3604–3608

    PubMed  CAS  Google Scholar 

  10. Ingledew WM, Thomas KC, Hynes SH, McLeod JG (1999) Viscosity concerns with rye mashes used for ethanol production. Cereal Chem 76:459–464. doi:10.1094/CCHEM.1999.76.3.459

    Article  CAS  Google Scholar 

  11. Ingledew WM, Jones AM, Bhatty RS, Rossnagel BG (1995) Fuel alcohol production from hull-less barley. Cereal Chem 72:147–150

    CAS  Google Scholar 

  12. Lee WJ, Yoon JR, Park KJ, Chung KM (2000) Fermentation of corn and wheat with supplementation of inactive dry brewer’s yeast. J Am Soc Brew Chem 58:155–159

    CAS  Google Scholar 

  13. Levine AS, Fellers CR (1940) Action of acetic acid on food spoilage microorganisms. J Bacteriol 39:499–515

    PubMed  CAS  Google Scholar 

  14. Madshus IH (1988) Regulation of intracellular pH in eukaryotic cells. Biochem J 250:1–8

    PubMed  CAS  Google Scholar 

  15. Maiorella B, Blanch HW, Wilke CR (1983) By-product inhibition effects on ethanolic fermentation by Saccharomyces cerevisiae. Biotechnol Bioeng 25:103–121. doi:10.1002/bit.260250109

    Article  PubMed  CAS  Google Scholar 

  16. Mojovic L, Nikolic S, Rakin M, Vukasinovic M (2006) Production of bioethanol from corn meal hydrolyates. Fuel 85:1750–1755. doi:10.1016/j.fuel.2006.01.018

    Google Scholar 

  17. Naidu K, Singh V, Johnston DB, Rausch KD, Tumbleson ME (2007) Effects of ground corn particle size on ethanol yield and thin stillage soluble solids. Cereal Chem 84:6–9. doi:10.1094/CCHEM-84-1-0006

    Article  CAS  Google Scholar 

  18. Narendranath NV, Thomas KC, Ingledew WM (2001) Acetic acid and lactic acid inhibition of growth of Saccharomyces cerevisiae by different mechanisms. J Am Soc Brew Chem 59:187–194

    CAS  Google Scholar 

  19. Narendranath NV, Thomas KC, Ingledew WM (2001) Effects of acetic acid and lactic acid on growth of Saccharomyces cerevisiae in a minimal medium. J Ind Microbiol Biotechnol 26:171–177. doi:10.1038/sj.jim.7000090

    Article  PubMed  CAS  Google Scholar 

  20. Pampulha ME, Loureiro V (1989) Interaction of the effects of acetic acid and ethanol on inhibition of fermentation in Saccharomyces cerevisiae. Biotechnol Lett 11:269–274. doi:10.1007/BF01031576

    Article  CAS  Google Scholar 

  21. Pampulha ME, Loureiro-Dias MC (1989) Combined effect of acetic acid, pH and ethanol on intracellular pH of fermenting yeast. Appl Microbiol Biotechnol 31:547–550. doi:10.1007/BF00270792

    Article  CAS  Google Scholar 

  22. Pampulha ME, Loureiro-Dias MC (1990) Activity of glycolytic enzymes of Saccharomyces cerevisiae in the presence of acetic acid. Appl Microbiol Biotechnol 34:375–380. doi:10.1007/BF00170063

    Article  CAS  Google Scholar 

  23. Pampulha ME, Loureiro-Dias MC (2000) Energetics of the effect of acetic acid on growth of Saccharomyces cerevisiae. FEMS Microbiol Lett 184:69–72. doi:10.1111/j.1574-6968.2000.tb08992.x

    Article  PubMed  CAS  Google Scholar 

  24. Phowchinda O, Delia-Dupuy ML, Strehaiano P (1995) Effects of acetic acid on growth and fermentative activity of Saccharomyces cerevisiae. Biotechnol Lett 17:237–242. doi:10.1007/BF00127996

    Article  CAS  Google Scholar 

  25. Ramos S, Balbib M, Raposo M, Valle E, Pardo LA (1989) The mechanism of intracellular acidification induced by glucose in Saccharomyces cerevisiae. J Gen Microbiol 64:91–99

    Google Scholar 

  26. Renewable Fuels Association (RFA) (2008) Changing the climate: ethanol industry outlook 2008. http://www.ethanolrfa.org/media/pdf/outlook_2008.pdf. Accessed on 6 March 2008

  27. Russell I (2003) Understanding yeast fundamentals. In: Jacques KA, Lyons TP, Kelsall DR (eds) The alcohol textbook, 4th edn. Nottingham University Press, Nottingham, pp 85–119

    Google Scholar 

  28. Singh V, Batie CJ, Aux GW, Rausch KD, Miller C (2006) Dry-grind processing of corn with endogenous liquefaction enzymes. Cereal Chem 83:317–320. doi:10.1094/CC-83-0317

    Article  CAS  Google Scholar 

  29. Singh V, Graeber JV (2005) Effect of corn hybrid variability and planting location on ethanol production. Trans ASAE 48:709–714

    CAS  Google Scholar 

  30. Taherzadeh MJ, Niklasson C, Liden G (1997) Acetic acid—friend or foe in anaerobic batch conversion of glucose to ethanol by Saccharomyces cerevisiae? Chem Eng Sci 15:2653–2659. doi:10.1016/S0009-2509(97)00080-8

    Article  Google Scholar 

  31. Taipa MA, Cabral JMS, Santos H (1993) Comparison of glucose fermentation by suspended and gel-entrapped yeast cells: an in vivo nuclear magnetic resonance study. Biotechnol Bioeng 41:647–653. doi:10.1002/bit.260410607

    Article  PubMed  CAS  Google Scholar 

  32. Thomas KC, Dhas A, Rossnagel BG, Ingledew WM (1995) Production of fuel alcohol from hull-less barley by very high gravity technology. Cereal Chem 72:360–364

    CAS  Google Scholar 

  33. Thomas KC, Hynes SH, Ingledew WM (2002) Influence of medium buffering capacity on inhibition of Saccharomyces cerevisiae growth by acetic and lactic acids. Appl Environ Microbiol 68:1616–1623. doi:10.1128/AEM.68.4.1616-1623.2002

    Article  PubMed  CAS  Google Scholar 

  34. Thomas KC, Ingledew WM (1990) Fuel alcohol production: effects of free amino nitrogen on fermentation of very-high-gravity wheat mashes. Appl Environ Microbiol 56:2046–2050

    PubMed  CAS  Google Scholar 

  35. United States Department of Agriculture (USDA) (2008) Crop production 2007 summary. http://usda.mannlib.cornell.edu/usda/current/CropProdSu/CropProdSu-01-11-2008.pdf. Accessed on 6 March 2008

  36. Valli M, Sauer M, Branduardi P, Borth N, Porro D, Mattanovich D (2005) Intracellular pH distribution in Saccharomyces cerevisiae cell populations, analyzed by flow cytometry. Appl Environ Microbiol 71:1515–1521. doi:10.1128/AEM.71.3.1515-1521.2005

    Article  PubMed  CAS  Google Scholar 

  37. Wang S, Ingledew WM, Thomas KC, Sousulski K, Sosulski FW (1999) Optimization of fermentation temperature and mash specific gravity for fuel alcohol production. Cereal Chem 76:82–86. doi:10.1094/CCHEM.1999.76.1.82

    Article  CAS  Google Scholar 

  38. Wang S, Thomas KC, Ingledew WM, Sosulski K, Sosulski FW (1997) Rye and triticale as feedstock for fuel ethanol production. Cereal Chem 74:621–625. doi:10.1094/CCHEM.1997.74.5.621

    Article  CAS  Google Scholar 

  39. Wu X, Wang D, Bean SR, Wilson JP (2006) Ethanol production from pearl millet using Saccharomyces cerevisiae. Cereal Chem 83:127–131. doi:10.1094/CC-83-0127

    Article  CAS  Google Scholar 

  40. Wu X, Zhao R, Bean SR, Seib PA, McLaren JS, Madl RL et al (2007) Factors impacting ethanol production from grain sorghum in the dry-grind process. Cereal Chem 84:130–136. doi:10.1094/CCHEM-84-2-0130

    Article  CAS  Google Scholar 

  41. Wu X, Zhao R, Wang D, Bean SR, Seib PA, Tuinstra MR et al (2006) Effects of amylose, corn protein and corn fiber contents on production of ethanol from starch rich media. Cereal Chem 83:569–575. doi:10.1094/CC-83-0569

    Article  CAS  Google Scholar 

  42. Zhan X, Wang D, Bean SR, Mo X, Sun XS, Boyle D (2006) Ethanol production from supercritical-fluid-extrusion cooked sorghum. Ind Crops Prod 23:304–310. doi:10.1016/j.indcrop.2005.09.001

    Article  CAS  Google Scholar 

  43. Zhao R, Bean S, Wang D, Park SH, Schober TJ, Wilson J (2008) Small-scale mashing procedure for predicting ethanol yield of sorghum grain. J Cereal Sci 48 (in press)

Download references

Acknowledgments

This project was supported by the National Research Initiative of the USDA Cooperative State Research, Education and Extension Service, grant number 2004-35504-14808. Authors would like to thank Novozymes Inc. for providing Liquozyme SC DS and Spirizyme Fuel, and Fermentis of S.I. Lesaffre for the active dry yeast used in this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donghai Wang.

Additional information

Names are necessary to report factually on available data; however, the U.S. Department of Agriculture neither guarantees nor warrants the standard of the product, and use of the name by the U.S. Department of Agriculture implies no approval of the product to the exclusion of others that may also be suitable.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, R., Bean, S.R., Crozier-Dodson, B.A. et al. Application of acetate buffer in pH adjustment of sorghum mash and its influence on fuel ethanol fermentation. J Ind Microbiol Biotechnol 36, 75–85 (2009). https://doi.org/10.1007/s10295-008-0474-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-008-0474-y

Keywords

Navigation