Skip to main content
Log in

Production of laccases in submerged process by Pleurotus sajor-caju PS-2001 in relation to carbon and organic nitrogen sources, antifoams and Tween 80

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Some conditions in media composition for laccases production, such as different sources of carbon and organic nitrogen, antifoams and a surfactant, were studied in liquid cultures of Pleurotus sajor-caju strain PS-2001. Cultivation with fructose or glucose as carbon sources produced maximum enzyme activities of 37 and 36 U mL−1, respectively. When sucrose was present in the medium, the best results were obtained using 5 g L−1 of this carbohydrate, on the 11th day of the process, attaining laccase titres of 13 U mL−1. In a medium without casein, practically no enzyme was produced during the experiments; among the sources of nitrogen studied, pure casein led to the highest titres of laccase activity. Different concentrations of pure casein and sucrose were also tested. As to the different concentrations of casein, the addition of 1.5 g L−1 resulted in the highest titres of laccase activity. Negligible levels of manganese peroxidase activity were also detected in the culture medium. In low concentrations, polypropylene glycol or silicon-based antifoams and the surfactant Tween 80 have no significant influence on the formation of laccases by P. sajor-caju. However, enhanced concentration of polypropylene glycol negatively affected the production of laccases but favored the titres in total peroxidases, lignin peroxidase and veratryl alcohol oxidase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bonatti M, Karnopp P, Soares HM, Furlan SA (2004) Evaluation of Pleurotus ostreatus and Pleurotus sajor-caju nutritional characteristics when cultivated in different lignocellulosic wastes. Food Chem 88:425–428. doi:10.1016/j.foodchem.2004.01.050

    Article  CAS  Google Scholar 

  2. Tien M, Kirk TK (1984) Lignin-degrading enzyme from Phanerochaete chrysosporium: purification, characterization, and catalytic properties of a unique H2O2-requiring oxygenase. Proc Natl Acad Sci USA 81:2280–2284. doi:10.1073/pnas.81.8.2280

    Article  PubMed  CAS  Google Scholar 

  3. Pandey A, Soccol CR, Mitchell D (2000) New developments in solid state fermentation: I-bioprocesses and products. Process Biochem 35:1153–1169. doi:10.1016/S0032-9592(00)00152-7

    Article  CAS  Google Scholar 

  4. Gill PK, Arora DS (2003) Effect of culture conditions on manganese peroxidase production and activity by some white rot fungi. J Ind Microbiol Biotechnol 30:28–33

    PubMed  CAS  Google Scholar 

  5. Baiocco P, Barreca AM, Fabbrini M, Galli C, Gentili P (2003) Promoting laccase activity towards non-phenolic substrates: a mechanistic investigation with some laccase-mediator systems. Org Biomol Chem 1:191–197. doi:10.1039/b208951c

    Article  PubMed  CAS  Google Scholar 

  6. Mougin C, Jolivalt C, Briozzo P, Madzak C (2003) Fungal laccases: from structure-activity studies to environmental applications. Environ Chem Lett 1:145–148. doi:10.1007/s10311-003-0024-9

    Article  CAS  Google Scholar 

  7. Peralta-Zamora P, Pereira CM, Tiburtius ERL, Moraes SG, Rosa MA, Minussi RC et al (2003) Decolorization of reactive dyes by immobilized laccase. Appl Catal B 42:131–144. doi:10.1016/S0926-3373(02)00220-5

    Article  CAS  Google Scholar 

  8. Valderrama B, Oliver P, Medrano-Soto A, Vazquez-Duhalt R (2003) Evolutionary and structural diversity of fungal laccases. Antonie Van Leeuwenhoek 84:289–299. doi:10.1023/A:1026070122451

    Article  PubMed  CAS  Google Scholar 

  9. Breen A, Singleton FL (1999) Fungi in lignocellulose breakdown and biopulping. Curr Opin Biotechnol 10:252–258. doi:10.1016/S0958-1669(99)80044-5

    Article  PubMed  CAS  Google Scholar 

  10. Tinoco R, Pickard MA, Vazquez-Duhalt R (2001) Kinetic differences of purified laccases from six Pleurotus ostreatus strains. Lett Appl Microbiol 32:331–335. doi:10.1046/j.1472-765X.2001.00913.x

    Article  PubMed  CAS  Google Scholar 

  11. Blánquez P, Caminal G, Sarrá M, Vincent MT, Gabarrell X (2002) Olive oil mill waste water decoloration and detoxification in a bioreactor by the white rot fungus Phanerochaete flavido-alba. Biotechnol Prog 18:660–662. doi:10.1021/bp020021s

    Article  PubMed  CAS  Google Scholar 

  12. Kim Y, Cho N-S, Eom T-J, Shin W (2002) Purification and characterization of a laccase from Cerrena unicolor and its reactivity in lignin degradation. Bull Korean Chem Soc 23:985–989

    Article  CAS  Google Scholar 

  13. Gomes SASS, Rebelo MJF (2003) A new laccase biosensor for polyphenols determination. Sensors 3:166–175

    Article  CAS  Google Scholar 

  14. Hou H, Zhou J, Wang J, Du C, Yan B (2004) Enhancement of laccase production by Pleurotus ostreatus and its use for the decolorization of anthraquinone dye. Process Biochem 39:1415–1419. doi:10.1016/S0032-9592(03)00267-X

    Article  CAS  Google Scholar 

  15. Munari FM, Gaio TA, Calloni R, Dillon AJP (2008) Decolorization of textile dyes by enzymatic extract and submerged cultures of Pleurotus sajor-caju. World J Microbiol Biotechnol 24:1383–1392. doi:10.1007/s11274-007-9621-2

    Article  CAS  Google Scholar 

  16. Munari FM, Gaio TA, Dillon AJP (2007) Phenol degradation and color removal in submerged culture of Pleurotus sajor-caju with paper mill effluents. Biocatalysis Biotransform 25:24–28. doi:10.1080/10242420600906355

    Article  CAS  Google Scholar 

  17. Pilz R, Hammer E, Schauer F, Kragl U (2003) Laccase-catalyzed synthesis of coupling products of phenolic substrates in different reactors. Appl Microbiol Biotechnol 60:708–712

    PubMed  CAS  Google Scholar 

  18. Rodríguez E, Nuero O, Guillén F, Martínez AT, Martínez MJ (2004) Degradation of phenolic and non-phenolic aromatic pollutants by four Pleurotus species: the role of laccase and versatile peroxidase. Soil Biol Biochem 36:909–916. doi:10.1016/j.soilbio.2004.02.005

    Article  CAS  Google Scholar 

  19. Denizli A, Cihangir N, Tüzmen N, Alsancak G (2005) Removal of chlorophenols from aquatic systems using the dried and dead fungus Pleurotus sajor-caju. Bioresour Technol 96:59–62. doi:10.1016/j.biortech.2003.11.029

    Article  PubMed  CAS  Google Scholar 

  20. Jolivalt C, Madzak C, Brault A, Caminade E, Malosse C, Mougin C (2005) Expression of laccase IIIb from the white-rot fungus Trametes versicolor in the yeast Yarrowia lipolytica for environmental applications. Appl Microbiol Biotechnol 66:450–456. doi:10.1007/s00253-004-1717-0

    Article  PubMed  CAS  Google Scholar 

  21. Guillén-Navarro GK, Márquez-Rocha FL, Sanchez-Vázquez JE (1998) Producción de biomasa y enzimas ligninolíticas por Pleurotus ostreatus en cultivo submergido. Rev Iberoam Micol 15:302–306

    PubMed  Google Scholar 

  22. Wu J-Z, Cheung PCK, Wong K-H, Huang N-L (2004) Studies on submerged fermentation of Pleurotus tuber-regium (Fr.) Singer. Part 2: Effect of carbon-to-nitrogen ratio of the culture medium on the content and composition of the mycelial dietary fibre. Food Chem 85:101–105. doi:10.1016/j.foodchem.2003.06.009

    Article  CAS  Google Scholar 

  23. Mikiashvili N, Wasser SP, Nevo E, Elisashvili V (2006) Effects of carbon and nitrogen sources on Pleurotus ostreatus ligninolytic enzyme activity. World J Microbiol Biotechnol 22:999–1002. doi:10.1007/s11274-006-9132-6

    Article  CAS  Google Scholar 

  24. Revankar MS, Lele SS (2006) Enhanced production of laccase using a new isolate of white rot fungus WR-1. Process Biochem 41:581–588. doi:10.1016/j.procbio.2005.07.019

    Article  CAS  Google Scholar 

  25. Stajic M, Persky L, Friesem D, Hadar Y, Wasser SP, Nevo E et al (2006) Effect of different carbon and nitrogen sources on laccase and peroxidases production by selected Pleurotus species. Enzyme Microb Technol 38:65–73. doi:10.1016/j.enzmictec.2005.03.026

    Article  CAS  Google Scholar 

  26. Elisashvili V, Kachlishvili E, Tsiklauri N, Bakradze M (2002) Physiological regulation of edible and medicinal higher basidiomycetes lignocellulolytic enzymes activity. Int J Med Mushrooms 4:159–166

    CAS  Google Scholar 

  27. Galhaup C, Wagner H, Hinterstoisser B, Haltrich D (2002) Increased production of laccase by the wood-degrading basidiomycete Trametes pubescens. Enzyme Microb Technol 30:529–536. doi:10.1016/S0141-0229(01)00522-1

    Article  CAS  Google Scholar 

  28. Mikiashvili N, Elisashvili V, Wasser S, Nevo E (2005) Carbon and nitrogen sources influence the ligninolytic enzyme activity of Trametes versicolor. Biotechnol Lett 27:955–959. doi:10.1007/s10529-005-7662-x

    Article  PubMed  CAS  Google Scholar 

  29. Elisashvili V, Penninckx M, Kachlishvili E, Asatiani M, Kvesitadze G (2006) Use of Pleurotus dryinus for lignocellulolytic enzymes production in submerged fermentation of mandarin peels and tree leaves. Enzyme Microb Technol 38:998–1004. doi:10.1016/j.enzmictec.2005.08.033

    Article  CAS  Google Scholar 

  30. Muñoz C, Guillén F, Martínez AT, Martínez MJ (1997) Induction and characterization of laccase in the ligninolytic fungus Pleurotus eryngii. Curr Microbiol 34:1–5. doi:10.1007/s002849900134

    Article  PubMed  Google Scholar 

  31. Koroljova-Skorobogat’ko OV, Stepanova EV, Gavrilova VP, Morozova OV, Lubimova NA, Dzchafarova AN et al (1998) Purification and characterization of the constitutive forms of laccase from the basidiomycete Coriolus hirsutus and effect of inducers on laccase synthesis. Biotechnol Appl Biochem 28:47–54

    PubMed  CAS  Google Scholar 

  32. Arora DS, Gill PK (2001) Effects of various media and supplements on laccase production by some white rot fungi. Bioresour Technol 77:89–91. doi:10.1016/S0960-8524(00)00114-0

    Article  PubMed  CAS  Google Scholar 

  33. Chen S, Ma D, Ge W, Buswell JA (2003) Induction of laccase activity in the edible straw mushroom, Volvariella volvacea. FEMS Microbiol Lett 218:143–148. doi:10.1111/j.1574-6968.2003.tb11510.x

    Article  PubMed  CAS  Google Scholar 

  34. Moldes D, Gallego PP, Couto SR, Sanromán A (2003) Grape seeds: the best lignocellulosic waste to produce laccase by solid state cultures of Trametes hirsuta. Biotechnol Lett 25:491–495. doi:10.1023/A:1022660230653

    Article  PubMed  CAS  Google Scholar 

  35. Kollmann A, Boyer F-D, Ducrot P-H, Kerhoas L, Jolivalt C, Touton I et al (2005) Oligomeric compounds formed from 2,5-xylidine (2,5-dimethylaniline) are potent enhancers of laccase production in Trametes versicolor ATCC 32745. Appl Microbiol Biotechnol 68:251–258. doi:10.1007/s00253-004-1860-7

    Article  PubMed  CAS  Google Scholar 

  36. Pozdnyakova NN, Rodakiewicz-Nowak J, Turkovskaya OV (2004) Catalytic properties of yellow laccase from Pleurotus ostreatus D1. J Mol Catal B Enzym 30:19–24. doi:10.1016/j.molcatb.2004.03.005

    Article  CAS  Google Scholar 

  37. Rancaño G, Lorenzo M, Morales N, Couto SR, Sanromán MA (2003) Production of laccase by Trametes versicolor in an airlift fermentor. Process Biochem 39:467–473. doi:10.1016/S0032-9592(03)00083-9

    Article  CAS  Google Scholar 

  38. Giese EC, Covizzi LG, Dekker RFH, Barbosa AM (2004) Influência de Tween na produção de lacases constitutivas e indutivas pelo Botryosphaeria sp. Acta Sci Biol Sci 26:463–470

    Google Scholar 

  39. Mandels M, Reese ET (1957) Induction of cellulase in Trichoderma viride as influenced by carbon source and metals. J Bacteriol 73:269–278. doi:10.1002/path.1700730133

    Article  PubMed  CAS  Google Scholar 

  40. Nüske J, Schneibner K, Dornberger U, Ullrich R, Hofrichter M (2002) Large scale production of manganese-peroxidase using agaric white-rot fungi. Enzyme Microb Technol 30:556–561. doi:10.1016/S0141-0229(02)00013-3

    Article  Google Scholar 

  41. Wolfenden RS, Wilson RL (1982) Radical-cations as reference chromogens in the kinetic studies of one-electron transfer reactions: pulse radiolysis studies of 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulphonate). J Chem Soc Perkin Trans II 02:805–812. doi:10.1039/p29820000805

    Article  Google Scholar 

  42. Heinzkill M, Bech L, Halkier T, Schneider P, Anke T (1998) Characterization of laccases and peroxidases from wood-rotting fungi (Family Coprinaceae). Appl Environ Microbiol 64:1601–1606

    PubMed  CAS  Google Scholar 

  43. Kuwahara M, Glenn JK, Morgan MA, Gold MH (1984) Separation and characterization of two extracellular H2O2-dependent oxidases from ligninolytic cultures of Phanerochaete chrysosporium. FEBS Lett 169:247–250. doi:10.1016/0014-5793(84)80327-0

    Article  CAS  Google Scholar 

  44. Bourbonnais R, Paice MG (1988) Veratryl alcohol oxidases from the lignin-degrading basidiomycete Pleurotus sajor-caju. Biochem J 255:445–450

    PubMed  CAS  Google Scholar 

  45. Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  PubMed  CAS  Google Scholar 

  46. Fu SY, Yu H-S, Buswell JA (1997) Effect of a nutrient nitrogen and manganese on manganese peroxidase and laccase production by Pleurotus sajor-caju. FEMS Microbiol Lett 147:133–137. doi:10.1111/j.1574-6968.1997.tb10232.x

    Article  CAS  Google Scholar 

  47. Swamy J, Ramsay JA (1999) Effects of glucose and NH4 + concentrations on sequential dye decoloration by Trametes versicolor. Enzyme Microb Technol 25:278–284. doi:10.1016/S0141-0229(99)00058-7

    Article  CAS  Google Scholar 

  48. Swamy J, Ramsay JA (1999) Effects of Mn2+ and NH4 + concentrations on laccase and manganese peroxidase production and Amaranth decoloration by Trametes versicolor. Appl Microbiol Biotechnol 51:391–396. doi:10.1007/s002530051408

    Article  CAS  Google Scholar 

  49. Calvo AM, Copa-Patino JL, Alonso O, Gonzalez AE (1998) Studies of the production and characterization of laccase activity in the basidiomycete Coriolopsis gallica, an efficient decolorizer of alkaline effluents. Arch Microbiol 171:31–36. doi:10.1007/s002030050674

    Article  PubMed  CAS  Google Scholar 

  50. Lee BC, Bae JT, Pyo HB, Choe TB, Kim SW, Hwang HJ et al (2004) Submerged culture conditions for the production of mycelial biomass and exopolysaccharides by the edible basidiomycete Grifola frondosa. Enzyme Microb Technol 35:369–376. doi:10.1016/j.enzmictec.2003.12.015

    Article  CAS  Google Scholar 

  51. Vyas BRM, Molitoris HP (1995) Involvement of an extracellular H2O2-dependent ligninolytic activity of the white rot fungus Pleurotus ostreatus in the decolorization of Remazol Brilliant Blue R. Appl Environ Microbiol 61:3919–3927

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Fundação de Amparo à Pesquisa do Rio Grande do Sul (FAPERGS) and University of Caxias do Sul (UCS). F. Bettin receives a scholarship from the Coordenadoria de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aldo J. P. Dillon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bettin, F., Montanari, Q., Calloni, R. et al. Production of laccases in submerged process by Pleurotus sajor-caju PS-2001 in relation to carbon and organic nitrogen sources, antifoams and Tween 80. J Ind Microbiol Biotechnol 36, 1–9 (2009). https://doi.org/10.1007/s10295-008-0463-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-008-0463-1

Keywords

Navigation