Skip to main content
Log in

Immobilization of the recombinant invertase INVB from Zymomonas mobilis on Nylon-6

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

The recombinant invertase INVB (re-INVB) from Zymomonas mobilis was immobilized on microbeads of Nylon-6, by means of covalent bonding. The enzyme was strongly and successfully bound to the support. The activity of the free and immobilized enzyme was determined, using 10% (w/v) sucrose, at a temperature ranging between 15 and 60 °C and a pH ranging between 3.5 and 7. The optimal pH and temperature for the immobilized enzyme were 5.5 and 25 °C, respectively. Immobilization of re-INVB on Nylon-6 showed no significant change in the optimal pH, but a difference in the optimal temperature was evident, as that for the free enzyme was shown to be 40 °C. The values for kinetic parameters were determined as: 984 and 98 mM for \( K_{m}^{\text{app}} \) of immobilized and free re-INVB, respectively. \( K_{\text{cat}}^{\text{app}} \) values for immobilized and free enzymes were 6.1 × 102 and 1.2 × 104 s−1, respectively, and immobilized re-INVB showed \( V_{\max }^{\text{app}} \) of 158.73 μmol h min−1 mg−1. Immobilization of re-INVB on Nylon-6 enhanced the thermostability of the enzyme by 50% at 30 °C and 70% at 40 °C, when compared to the free enzyme. The immobilization system reported here may have future biotechnological applications, owing to the simplicity of the immobilization technique, the strong binding of re-INVB to the support and the effective thermostability of the enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Arroyo M (1998) Immobilized enzymes: theory, methods of study and applications. Ars Pharm 39:23–29

    Google Scholar 

  2. D′Souza S, Melo J (2001) Immobilized of bakers yeast on jute fabric through adhesion using polyethylenimine: application in an annular column reactor for the inversion of sucrose. Process Biochem 36:677–681

    Article  CAS  Google Scholar 

  3. Milavanovic A, Bozic N, Vujcic Z (2006) Cell wall invertase immobilization within calcium alginate beads. Food Chem 104:81–86

    Article  Google Scholar 

  4. Vásquez-Bahena JM, Vega-Estrada J, Santiago-Hernández JA, Ortega-López J, Flores-Cotera LB, Montes-Horcasitas MC, Hidalgo-Lara ME (2006) Expression and improved production of the soluble extracellular invertase from Zymomonas mobilis in Escherichia coli. Enzyme Microb Technol 40:61–66

    Article  Google Scholar 

  5. Amaya-Delgado L, Hidalgo-Lara ME, Montes-Horcasitas MC (2005) Hydrolysis of sucrose by invertase immobilized on Nylon-6 microbeads. Food Chem 99:299–304

    Article  Google Scholar 

  6. Yanase H, Iwata M, Kita K, Kato N, Tonomura K (1995) Purification, crystallization and characterization of the extracellular invertase from Zymomonas mobilis. J Ferment Bioeng 79:367–369

    Article  CAS  Google Scholar 

  7. Henrissat B (1991) A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 280:309–316

    PubMed  CAS  Google Scholar 

  8. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  9. Laemmli UK (1970) Cleavage of structural proteins during the assembly of head bateriophage. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  10. Ortega-López J, Morales RLH, Montes-Horcasitas MC, Magaña-Plaza I (1993) Lactose hydrolysis by immobilized β-galactosidase on Nylon-6: a novel spin-basket reactor. Biotechnol Tech 7:775–780

    Article  Google Scholar 

  11. Salleh AB (1982) Protein-alginate gel for enzyme immobilization. Biotechnol Lett 6:387–392

    Article  Google Scholar 

  12. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  13. Lowry NJ, Rosenbrought F, Randall AL (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  14. Lineweaver H, Burk D (1934) The determination of enzyme dissociation constants. J Am Chem Soc 56:658–666

    Article  CAS  Google Scholar 

  15. Bergamasco R, Bassetti FJ, Moraes F, Zanin GM (2000) Characterization free and immobilized invertase regarding activity and energy of activation. Braz J Chem Eng 17:4–7

    Article  Google Scholar 

  16. Santiago-Hernández JA, Vásquez-Bahena JM, Calixto-Romo MA, Xoconostle-Cázares GB, Ortega-López J, Ruiz-Medrano R, Montes-Horcasitas MC, Hidalgo-Lara ME (2005) Direct immobilization of a recombinant invertase to Avicel by E. coli overexpression of a fusion protein containing the extracellular invertase from Zymomonas mobilis and the carbohydrate-binding domain CBDCex from Cellulomonas fimi. Enzyme Microb Technol 40:172–176

    Article  Google Scholar 

  17. Prodanovic R, Milos B, Zoran M (2003) Immobilization of periodate oxidized invertase by adsorption on sepiolite. J Serb Chem Soc 11:819–824

    Article  Google Scholar 

  18. Tümtürk H, Arslan F, Disli A, Tufan Y (2000) Immobilization of invertase attached to a granular dimer acid-co-alkyl polyamine. Food Chem 69:5–9

    Article  Google Scholar 

  19. Van Cleve JW (1993) Direct benzoylation of d-fructose, In: Whistler RL, Wolfrom ML (eds) (1993) Methods in carbohydrate chemistry, vol II, Academic Press Inc., London, pp 237–238

  20. Torres R, Mateo C, Fuentes M, Palomo JM, Ortiz C, Fernández LR, Guisan J (2002) Reversible immobilization of invertase on sepabeads coated with polyethylenimine: optimization of the biocatalyst’s stability. Biotechnol Prog 18:1221–1226

    Article  PubMed  CAS  Google Scholar 

  21. Ooshima H, Genko Y, Harano Y (1981) Effect of intraparticle diffusion resistance on apparent stability of immobilized enzymes. Biotechnol Bioeng 9:1991–2000

    Article  Google Scholar 

  22. Vallejo-Becerra V, Marín-Zamora ME, Vásquez-Bahena JM, Rojas-Melgarejo F, Hidalgo-Lara ME, García-Ruíz PA (2008) Immobilization of recombinante invertase (re-INVB) from Zymomonas mobilis on d-sorbitol cinnamic ester for production of invert sugar. J Agric Food Chem 56:1392–1397

    Article  PubMed  CAS  Google Scholar 

  23. Shahid H, Farahdiba J, Saleemuddin M (1996) Effects of chemical modification on the stability of invertase before and after immobilization. Enzyme Microb Technol 4:275–280

    Google Scholar 

  24. Mansfeld J, Forster M, Schellengergera A, Dautzenerg (1991) Immbolization of invertase by encapsulation in polyelectrolyte complexes. Enzyme Microb Technol 13:240–244

  25. Monsan P, Combes D (1984) Application of immobilized invertase to continuous hydrolysis of concentrated sucrose solutions. Biotechnol Bioeng 26:347–351

    Article  PubMed  CAS  Google Scholar 

  26. Mazi H, Emrugel E, Rzaev ZMO, Kibarer G (2006) Preparation and properties of invertase on a poly(maleic anhydride-hexen-1) membrane. J Biomat Sci 17:821–835

    Article  CAS  Google Scholar 

  27. Kiyokazu I, Tomoo S, Kazuhiro S, Atsuyoshi F (1983) Preparation of immobilized invertase using poly(vinyl alcohol) membrane. Biotechnol Bioeng 25:613–627

    Article  Google Scholar 

  28. Isgrove FH, Williams RJH, Niven GW, Andrews AT (2001) Enzyme immobilization on Nylon-optimization and the steps used to prevent enzyme leakage from the support. Enzyme Microb Technol 28:225–232

    Article  PubMed  CAS  Google Scholar 

  29. Goldstein L, Freeman A, Sokolovsky M (1974) Chemically modified nylons as supports for enzyme immobilization. Polyisonitrile-nylon. Biochem J 143:497–509

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The research was funded by the Centro de Investigación y de Estudios Avanzados (CINVESTAV-IPN), México. V.V.B gratefully acknowledges a scholarship from the Consejo Nacional de Ciencia y Tecnología (Conacyt), México.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Eugenia Hidalgo-Lara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vallejo-Becerra, V., Vásquez-Bahena, J.M., Santiago-Hernández, J.A. et al. Immobilization of the recombinant invertase INVB from Zymomonas mobilis on Nylon-6. J Ind Microbiol Biotechnol 35, 1289–1295 (2008). https://doi.org/10.1007/s10295-008-0426-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-008-0426-6

Keywords

Navigation