Skip to main content
Log in

Antimicrobial effect of oxidized cellulose salts

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Antimicrobial properties of oxidized cellulose and its salts in linters (-L) and microsphere (-M) form (OKCEL® H-L, OKCEL® Zn-M, OKCEL® ZnNa-L, OKCEL® ZnNa-M and OKCEL® Ag-L) were tested by a dilution method against a spectrum of microbial strains: Escherichia coli, Pseudomonas aeruginosa, Staphylococcus epidermidis, Bacillus licheniformis, Aspergillus niger, Penicillium chrysogenum, Rhizopus oryzae, Scopulariopsis brevicaulis, Candida albicans and Candida tropicalis. OKCEL® Ag-L exhibited antimicrobial activity in the range 0.1–3.5% w/v against all the bacteria and fungi involved in this study. Strong inhibition by OKCEL® ZnNa-M was observed for Staphylococcus epidermidis, Bacillus licheniformis, Rhizopus oryzae, Candida albicans and Candida tropicalis in the range 0.5–2.0% w/v. Antimicrobial effects of oxidized cellulose and its salts in textile form were investigated by a diffusion and dilution method against the spectrum of above-cited microbial strains extended by Clostridium perfringens. Generally, OKCEL® Ag-T, OKCEL® Zn-T and OKCEL® H-T showed high antimicrobial activity against populations of Pseudomonas aeruginosa, Bacillus licheniformis and Staphylococcus epidermidis. OKCEL® Zn-T was the only sample suppressing the growth of species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abaev IK, Kaputskii VE, Adarchenko AA, Sobeshchukh OP (1986) Mechanism of the antibacterial action of monocarboxycellulose and other ion-exchange derivatives of cellulose. Antibiot Med Biotechnol 31:624–628

    CAS  Google Scholar 

  2. Atmaca S, Gül K, Çiçek R (1998) The effect of zinc on microbial growth. Tr J Med Sci 28:595–597

    CAS  Google Scholar 

  3. Cason JS, Jackson DM, Lowbury EJ, Ricketts CR (1966) Antiseptic and aseptic prophylaxis for burns: use of silver nitrate and of isolators. Br Med J 2:1288–1294

    Article  PubMed  CAS  Google Scholar 

  4. Ferrari MJ, Turnidge JD (2003) Antibacterial agents and suspectibility test methods. ASM Press, Washington, pp 1037–1196

  5. Ip M, Lui SL, Poon VK, Lung I, Burd A (2006) Antimicrobial activities of silver dressings: an in vitro comparison. J Med Microbiol 55:59–63

    Article  PubMed  CAS  Google Scholar 

  6. Kumar V (2004) Regenerated cellulose and oxidized cellulose membranes as potential biodegradable platforms for drug delivery and tissue engineering. University of Iowa Research Foundation (Iowa City, IA), United States Patent no. 6.800.753. 5. 10. 2004

  7. Lansdown AB (2002) The role of silver. J Eur Tissue Rep Soc 9:108–111

    Google Scholar 

  8. Li XZ, Nikaido H, Williams KE (1997) Silver-resistant mutants of Escherichia coli display active efflux of Ag+ and are deficient in porins. J Bacteriol 179:6127–6132

    PubMed  CAS  Google Scholar 

  9. Maillard JY, Denyer SP (2006) Focus on silver. EWMA J 6:5–7

    Google Scholar 

  10. Percival SL, Bowler PG, Russell D (2005) Bacterial resistance to silver in wound care. J Hosp Infect 60:1–7

    Article  PubMed  CAS  Google Scholar 

  11. Pernet M (1983) Antibacterial effect of oxidized regenerated cellulose. Ann Chir 37:700–701

    PubMed  CAS  Google Scholar 

  12. Russell AD, Hugo WB (1994) Antimicrobial activity and action of silver. Prog Med Chem 31:351–370

    Article  PubMed  CAS  Google Scholar 

  13. Simonetti N, Simonetti G, Bougnol F, Scalzo M (1992) Electrochemical Ag+ for preservative use. Appl Environ Microbiol 58:3834–3836

    PubMed  CAS  Google Scholar 

  14. Södeberg TA, Sunze B, Holm S, Elmro T, Hallmans G, Sjöberg S (1990) Antibacterial effect of zinc oxide in vitro. Scand J Plast Reconstr Hand Surg 24:193–197

    Article  Google Scholar 

  15. Spangler D, Rothenburger S, Nguyen K, Jampani H, Weiss S, Bhende S (2003) In vitro antimicrobial activity of oxidized regenerated cellulose against antibiotic-resistant microorganisms. Surg Infect (Larchmt) 4:255–262

    Article  Google Scholar 

  16. Sugarman B (1983) Zinc and infection. Rev Infect Dis 5:138–147

    Google Scholar 

  17. Valouchová V, Vytrasova J (2005) Antimicrobial activity of impregnated textiles. Diploma thesis, University of Pardubice, Pardubice

  18. Wells TN, Scully P, Paravicini G, Proudfoot AE, Payton MA (1995) Mechanisms of irreversible inactivation of phosphomannose isomerases by silver ions and flamazine. Biochemistry 34:7896–7903

    Article  PubMed  CAS  Google Scholar 

  19. Woodward RL (1963) Review of the effectiveness of silver. J Am Water Works Assoc 55:881–886

    Google Scholar 

Download references

Acknowledgments

The work was supported by Ministry of Industry and Trade of the Czech Republic (project no. FT-TA2/011) and by Czech Science Foundation (project no. 203/08/1536).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Libor Cervenka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vytrasova, J., Tylsova, A., Brozkova, I. et al. Antimicrobial effect of oxidized cellulose salts. J Ind Microbiol Biotechnol 35, 1247–1252 (2008). https://doi.org/10.1007/s10295-008-0421-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-008-0421-y

Keywords

Navigation