Skip to main content
Log in

Production of biosurfactant by Bacillus subtilis LB5a on a pilot scale using cassava wastewater as substrate

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

The main characteristic of biosurfactants is their property of reducing the superficial and interfacial tension between two immiscible liquids of different polarities. The main obstacle to the application of biosurfactants is the high production costs, the use of alternative substrates being indicated to solve this problem. This work report the production of biosurfactant by Bacillus subtilis LB5a on a pilot scale using cassava wastewater as the substrate, and the study of the parameters related to its production. The cassava wastewater was heated, centrifuged and poured into a 40-liter batch pilot bioreactor adapted for simultaneous foam collection during the fermentative process. The temperature was maintained at 35 °C, agitation at 150 rpm and aeration 0.38 vvm during the first 12 h, and 0.63 vvm for the rest of the process. Samples of liquid fermentate were collected at regular intervals for the analysis of total carbohydrates, reducing sugars, pH, CFU/mL count and superficial tension. The foam was centrifuged and the biosurfactant purified. The kinetic data of the process showed that both the microbial population, which reached a maximum after about 24 h, and the foam production of 10.6 L, peaked between 24 and 36 h, coinciding with the greatest production of biosurfactant. The yield of semi-purified surfactant in the foam was 2.4 g/L. The superficial tension of the medium was reduced from 51 to 27 mN/m and the critical micellar concentration was 11 mg/L, which, in principle, characterizes it as a good tensoactive agent. As a function of its composition and productivity, cassava wastewater was identified as a good substrate for the production of the biosurfactant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ahimou F, Jaccques P, Deleu M (2000) Surfactin and iturin A effects on Bacillus subtilis surface hydrophobicity. Enzyme Microb Technol 27:749–754. doi:10.1016/S0141-0229(00)00295-7

    Article  PubMed  CAS  Google Scholar 

  2. AOAC (1995) Official method of analysis, 16th edn. AOAC International, Arlington

    Google Scholar 

  3. Banat IM, Makkar RS, Cameotra SS (2000) Potential commercial applications of microbial surfactants. Appl Microbiol Biotechnol 53:495–508. doi:10.1007/s002530051648

    Article  PubMed  CAS  Google Scholar 

  4. Barros FFC, Quadros CP, Maróstica MR Jr, Pastore GM (2007) Surfactina: propriedades químicas, tecnológicas e funcionais para aplicação em alimentos. Quim Nova 30:409–414

    CAS  Google Scholar 

  5. Bognolo G (1999) Biossurfactants as emulsifying agents for hydrocarbons. Colloids Surf 12:41–52

    Google Scholar 

  6. Bremmer JM, Keeney DR (1965) Steam-distillation methods for determination of ammonium, nitrate and nitrite. Anal Chim Acta 32:485–495. doi:10.1016/S0003-2670(00)88973-4

    Article  Google Scholar 

  7. Cameotra SS, Makkar RS (1998) Synthesis of biosurfactants in extreme conditions. Appl Microbiol Biotechnol 50:520–529. doi:10.1007/s002530051329

    Article  PubMed  CAS  Google Scholar 

  8. Cereda MP (2005) Produtos e subprodutos. In: Souza LS, Farias ARN, Mattos PLP, Fukuda WMG (eds) Processamento e utilização da mandioca. Embrapa Mandioca e Fruticultura Tropical, Cruza das Almas

    Google Scholar 

  9. Cooper DG, Macdonald CR, Duff SJB, Kosaric N (1981) Enhanced production of surfactin from Bacillus subtilis by continuous product removal and metal cation additions. Appl Environ Microbiol 42:408–412

    PubMed  CAS  Google Scholar 

  10. Daniels L, Hanson R, Phyllips JA (1994) Chemical analysis. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington

    Google Scholar 

  11. Davis DA, Lynch HC, Varley J (2001) The application of foaming for the recovery of surfactin from Bacillus subtilis ATCC 21332 cultures. Enzyme Microb Technol 28:346–354. doi:10.1016/S0141-0229(00)00327-6

    Article  PubMed  CAS  Google Scholar 

  12. Davis DA, Lynch HC, Varley J (1999) The production of surfactin in batch culture by Bacillus subtilis ATCC 21332 is strongly influenced by the conditions of nitrogen metabolism. Enzyme Microb Technol 25:322–329. doi:10.1016/S0141-0229(99)00048-4

    Article  CAS  Google Scholar 

  13. Deleu M, Paquot M, Nylander T (2005) Fengycin interaction with lipid monolayers at the air-aqueous interface-implications fopr the effect of fengycin on biological membranes. J Colloid Interface Sci 283:358–365. doi:10.1016/j.jcis.2004.09.036

    Article  PubMed  CAS  Google Scholar 

  14. Deleu M, Razafindralambo H, Popineau Y, Jacques P, Thonart P, Paquot M (1999) Interfacial and emulsifying properties of lipopeptides from Bacillus subtilis. Colloids Surf A Physicochem Eng Asp 152:3–10. doi:10.1016/S0927-7757(98)00627-X

    Article  CAS  Google Scholar 

  15. Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potencial. Microbiol Mol Biol Rev 61:47–64

    PubMed  CAS  Google Scholar 

  16. Desai JD, Desai AJ (1993) Production of biosurfactants. In: Kosaric N (ed) Biosurfactants: production, properties, applications. Marcel Decker, New York

    Google Scholar 

  17. EPA—US Environmental Protection Agency (1994) SW-846 Tests methods for evaluating solid wastes: Physical and chemicam methods. Washington

  18. Fox SL, Bala GA (2000) Production of surfactant from Bacillus subtilis ATCC 21332 using potato substrates. Bioresour Technol 75:235–240. doi:10.1016/S0960-8524(00)00059-6

    Article  CAS  Google Scholar 

  19. Gu X, Zheng Z, Yu H, Wang J, Liang F, Liu R (2005) Optimization of medium constituents for a novel lipopeptide production by Bacillus subtilis MO-01 by a response surface method. Process Biochem 40:3196–3201. doi:10.1016/j.procbio.2005.02.011

    Article  CAS  Google Scholar 

  20. Healy MG, Devine CM, Murphy R (1996) Microbial production of biosurfactants. Resour Conserv Recycling 18:41–57. doi:10.1016/S0921-3449(96)01167-6

    Article  Google Scholar 

  21. Huang H, Ridgway D, Gu T, Moo-Young M (2004) Enhanced amylase production by Bacillus subtilis using a dual exponential feeding strategy. Bioprocess Biosyst Eng 27:63–69. doi:10.1007/s00449-004-0391-z

    Article  PubMed  CAS  Google Scholar 

  22. Kim H, Yoon B, Lee C, Suh H, Oh H, Katsuragi T et al (1997) Production and properties of a lipopeptide biosurfactant from Bacillus subtilis C9. J Ferment Bioeng 84:41–46. doi:10.1016/S0922-338X(97)82784-5

    Article  Google Scholar 

  23. Kluge B, Vater J, Salnikow J, Eckart K (1988) Studies on the biosynthesis of surfactin, a lipopeptide antibiotic from Bacillus subtilis ATCC 21332. FEBS Lett 231:107–110. doi:10.1016/0014-5793(88)80712-9

    Article  PubMed  CAS  Google Scholar 

  24. Kowall M, Vater J, Kluge B, Stein T, Franke P, Ziessow D (1998) Separation and characterization of surfactin isoforms produced by Bacillus subtilis OKB 105. J Colloid Interface Sci 204:1–8. doi:10.1006/jcis.1998.5558

    Article  PubMed  CAS  Google Scholar 

  25. Lang S (2002) Biological amphiphiles (microbial surfactantes). Curr Opin Colloid Interface Sci 7:12–20. doi:10.1016/S1359-0294(02)00007-9

    Article  CAS  Google Scholar 

  26. Lin SC (1996) Biosurfactants: recents advances. J Chem Technol Biotechnol 66:109–120. doi:10.1002/(SICI)1097-4660(199606)66:2<109::AID-JCTB477>3.0.CO;2-2

    Google Scholar 

  27. Lin SC, Carswell KS, Sharma MM, Georgiou G (1994) Continuous production of the lipopeptide biosurfactant of Bacillus licheniformis JF-2. Appl Microbiol Biotechnol 41:281–285. doi:10.1007/BF00221219

    Article  CAS  Google Scholar 

  28. Maier RM (2003) Biosurfactants: evolution and diversity in bacteria. Adv Appl Microbiol 52:101–121. doi:10.1016/S0065-2164(03)01004-9

    Article  PubMed  CAS  Google Scholar 

  29. Makkar RS, Cameotra SS (2002) An update on the use of unconventional substrates for biosurfactant production and their new applications. Appl Microbiol Biotechnol 58:428–434. doi:10.1007/s00253-001-0924-1

    Article  PubMed  CAS  Google Scholar 

  30. Makkar RS, Cameotra SS (1997) Biosurfactant production by a thermophilic Bacillus subtilis strain. J Ind Microbiol Biotechnol 18:37–42. doi:10.1038/sj.jim.2900349

    Article  CAS  Google Scholar 

  31. Makkar RS, Cameotra SS (1999) Structural characterization of a biosurfactant poduced by Bacillus subtilis at 45 °C. J Surfactants Deterg 2:367–372

    Article  CAS  Google Scholar 

  32. Mulligan CN, Gibbs BF (1990) Recovery of biosurfactants by ultrafiltration. J Tech Biotechnol 47:23–29

    CAS  Google Scholar 

  33. Mulligan C (2005) Environmental applications for biosurfactants. Environ Pollut 133:183–198. doi:10.1016/j.envpol.2004.06.009

    Article  PubMed  CAS  Google Scholar 

  34. Nitschke M, Ferraz C, Pastore GM (2004) Selection of microorganisms for biosurfactant production using agro industrial wastes. Braz J Microbiol 35:81–85. doi:10.1590/S1517-83822004000100013

    Article  Google Scholar 

  35. Nitschke M, Haddad R, Costa GAN, Gilioli R, Meurer EC, Gatti MS et al (2004) Strutural characterization and biological properties of a lipopeptide surfactant produced by Bacillus subtilis on cassava wastewater medium. Food Sci Biotechnol 13:591–596

    CAS  Google Scholar 

  36. Nitschke M, Pastore GM (2006) Production and properties of a surfactant obtained from Bacillus subtilis grown on cassava wastewater. Bioresour Technol 97:336–341. doi:10.1016/j.biortech.2005.02.044

    Article  PubMed  CAS  Google Scholar 

  37. Pantaroto S, Cereda MP (2000) Linamarina e sua decomposição no ambiente. In: Cereda MP (ed) Manejo, uso e tratamento de subprodutos da industrialização da mandioca, vol 4. Fund, Cargill

    Google Scholar 

  38. Pastore GM, Santos CFC, Nitschcke M (2003) Processo de Produção de Biosuractante por Bacillus subtilis, utilizando resíduo da indústria de mandioca. Br Pat PI 0303853-0.

  39. Peypoux F, Bonmatin JM, Labbé H, Das BC, Ptak M, Michel G (1991) Isolation and characterization of a new variant of surfactin, the [Val7] surfactin. Eur J Biochem 202:101–106. doi:10.1111/j.1432-1033.1991.tb16349.x

    Article  PubMed  CAS  Google Scholar 

  40. Peypoux F, Bonmatin JM, Wallach J (1999) Recents trends in biochemistry of surfactin. Appl Microbiol Biotechnol 51:553–563. doi:10.1007/s002530051432

    Article  PubMed  CAS  Google Scholar 

  41. Razafindralambo H, Paquot M, Baniel A, Popineau Y, Hbid C, Jacques P et al (1996) Foaming properties of surfactin, a lipopeptide biosurfactant from Bacillus subtilis. J Am Oil Chem Soc 73:149–151. doi:10.1007/BF02523463

    Article  CAS  Google Scholar 

  42. Reiling HE, Thanei-Wyss U, Guerra-Santos LH, Hirt R, Käppeli O, Fiechter A (1986) Pilot plant production of rhaminolipid biosurfactant by Pseudomonas aeruginosa. Appl Environ Microbiol 51:985–989

    PubMed  CAS  Google Scholar 

  43. Sandrin C, Peipoux F, Michel G (1990) Coproduction of surfactin and iturin A lipopeptides with surfactant and antifungal properties by Bacillus subtilis. Biotechnol Appl Biochem 12:370–375

    PubMed  CAS  Google Scholar 

  44. Sheppard JD, Cooper DG (1991) The response of Bacillus subtilis ATCC 21332 to manganese during continuous-phased growth. Appl Microbiol Biotechnol 35:72–76. doi:10.1007/BF00180639

    Article  CAS  Google Scholar 

  45. Sheppard JD, Mulligan CN (1987) The production of surfactin by Bacillus subtilis grown on peat hydrolysate. Appl Microbiol Biotechnol 27:110–116. doi:10.1007/BF00251931

    Article  CAS  Google Scholar 

  46. Somogyi M (1945) A new reagent for determination of sugars. J Biol Chem 160:61–68

    CAS  Google Scholar 

  47. Thoma J, Brother C, Spradlin J (1970) Subsite mapping of enzymes. Studies on Bacillus subtilis amylase. Biochemistry 9:1768–1775. doi:10.1021/bi00810a016

    Article  PubMed  CAS  Google Scholar 

  48. Thompson DN, Fox SL, Bala GA (2000) Biosurfactants from potato process effluents. Appl Biochem Biotechnol 84:917–929. doi:10.1385/ABAB:84-86:1-9:917

    Article  PubMed  Google Scholar 

  49. Vater J (1986) Lipopeptides, an attractive class of microbial surfactants. Prog Colloid Polym Sci 72:12–18. doi:10.1007/BFb0114473

    Article  CAS  Google Scholar 

  50. Veenanadig NK, Gowthaman MK, Karath NGK (2000) Scale up for the production of biosurfactant packed column bioreactor. Bioprocess Eng 32:95–99. doi:10.1007/s004490050017

    Article  Google Scholar 

  51. Wei Y, Chu I (2002) Mn2+ improves surfactin production by Bacillus subtilis. Biotechnol Lett 24:479–482. doi:10.1023/A:1014534021276

    Article  CAS  Google Scholar 

  52. Wei Y, Chu I (2004) Optimizing iron supplement strategies for enhanced surfactin production with Bacillus subtilis. Biotechnol Prog 20:979–983. doi:10.1021/bp030051a

    Article  PubMed  CAS  Google Scholar 

  53. Yeh M, Wei Y, Chang J (2006) Bioreactorndesign for enhanced carrier-assisted surfactin production with Bacillus subtilis. Process Biochem 41:1799–1805. doi:10.1016/j.procbio.2006.03.027

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Conselho Nacional de Desenvolvimento Científico e Tecnológico (National Counsil of Technological and Scientific Development)—CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Fábio Cavalcante Barros.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barros, F.F.C., Ponezi, A.N. & Pastore, G.M. Production of biosurfactant by Bacillus subtilis LB5a on a pilot scale using cassava wastewater as substrate. J Ind Microbiol Biotechnol 35, 1071–1078 (2008). https://doi.org/10.1007/s10295-008-0385-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-008-0385-y

Keywords

Navigation