Skip to main content
Log in

Influence of amino nitrogen in the culture medium enhances the production of δ-endotoxin and biomass of Bacillus thuringiensis var. israelensis for the large-scale production of the mosquito control agent

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

We reported here the role of amino nitrogen in the commercial production of Bacillus thuringiensis var. israelensis media design. The insect pathogen B. thuringiensis var. israelensis was cultured in different media containing varying initial levels of amino nitrogen sources obtained from three different commercial venders. The biomass, mosquito larval toxicity and spore count produced were measured during the fermentation process. The results showed that the higher level of initial amino nitrogen concentrations in the medium led to higher yield of biomass (dry weight 4.78 g l−1), larvicidal activity (LC50 18.52 ng ml−1) and spore count (3.24 × 1011 CFU ml−1). Similarly decreasing the initial amino nitrogen concentration in the medium led to a decreased biomass (dry weight 1.64 g l−1), larvicidal activity (LC50 27.01 ng ml−1) and spore count (3.7 × 1010 CFUml−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abbott WS (1925) A method for computing the effectiveness of an insecticide. J Econ Entomol 27:865–867

    Google Scholar 

  2. Balaraman K, Hoti SL (1987) Comparative cost of mosquito control with larvicidal bacilli and insecticides. Indian J Malariol 24:131–134

    PubMed  CAS  Google Scholar 

  3. Balaraman K (1980) Mass production and storage of microbial agents for use in mosquito control. Indian J Med Res 72:222–226

    PubMed  CAS  Google Scholar 

  4. Balaraman K, Hoti SL, Manonmani AM (1981) An indigenous virulent strain of Bacillus thuringiensis, highly pathogenic and specific to mosquitoes. Curr Sci 50:199–200

    Google Scholar 

  5. Brown ID, Watson TM, Carter J, Purdie DM, Kay BH (2004) Toxicity of VectoLex (Bacillus sphaericus) products to selected Australian mosquito and nontarget species. J Econ Entomol 97:51–58

    Article  PubMed  CAS  Google Scholar 

  6. Finney DJ (1971) Probit analysis, 3rd edn edn. S. Chand and Co Ltd, New Delhi, pp 50–80

    Google Scholar 

  7. Goldberg LJ, Margalt J (1977) A bacterial spore demonstrating rapid larvicidal activity against Anopheles sergentii, Uranotaenia unguiculata, Culex univitattus, Aedes aegypti and Culex pipiens. Mosq News 37:355–358

    Google Scholar 

  8. Icgen Y, Icgen B, Ozcengiz G (2002) Regulation of crystal protein biosynthesis by Bacillus thuringiensis: II. Effects of carbon and nitrogen sources. Res Microbiol 153:605–609. doi:10.1016/S0923-2508(02)01366-9

    Article  PubMed  CAS  Google Scholar 

  9. Kuppusamy M, Balaraman K (1991) Effect of corn-steep liquor on growth and mosquito larvicidal activity of Bacillus thuringiensis var. israelensis. de Barjac 1978 and B. sphaericus Neide 1904. Indian J Exp Biol 29:187–189

    PubMed  CAS  Google Scholar 

  10. Lacey LA, Urbina MJ, Heitzman CM (1984) Sustained release formulations of Bacillus sphaericus and Bacillus thuringiensis (H-14) for control of container breeding Culex quinquefasciatus. Mosq News 44:26–32

    Google Scholar 

  11. Levy M (1957) Titrimatric procedures for amino acids. In: Cohowick SP, Kaplan NO (eds) Methods in enzymology. 3:454–458

  12. Manonmani AM, Hoti SL (1995) Field efficacy of indigenous strains of Bacillus thuringiensis H-14 and Bacillus sphaericus H-5a5b against Anopheles subpictus larvae. Trop Biomed 12:141–146

    Google Scholar 

  13. Merritt RW, Lessard JL, Wessell KJ, Hernandez O, Berg MB, Wallace JR, Novak JA, Ryan J, Merritt BW (2005) Lack of effects of Bacillus sphaericus (Vectolex) on nontarget organisms in a mosquito-control program in southeastern Wisconsin: a 3-year study. J Am Mosq Control Assoc 21:201–212. doi:10.2987/8756-971X(2005)21[201:LOEOBS]2.0.CO;2

    Article  PubMed  Google Scholar 

  14. Mummigatti SG, Raghunathan AN (1990) Influence of media composition on the production of delta-endotoxin by Bacillus thuringiensis var. thuringiensis. J Invertebra Pathol 55:147–151. doi:10.1016/0022-2011(90)90049-C

    Article  CAS  Google Scholar 

  15. Myers PS, Yousten AA (1980) Localization of a mosquito-larval toxin of Bacillus sphaericus 1593. Appl Environ Microbiol 39:1205–1209

    PubMed  CAS  Google Scholar 

  16. Pauchet Y, Luton F, Castella C, Charles JF, Romey G, Pauron D (2005) Effects of a mosquitocidal toxin on a mammalian epithelial cell line expressing its target receptor. Cell Microbiol 7:1335–1344. doi:10.1111/j.1462-5822.2005.00560.x

    Article  PubMed  CAS  Google Scholar 

  17. Prabakaran G, Balaraman K (2006) Development of a cost-effective medium for the large-scale production of Bacillus thuringiensis var. israelensis. Biol Control 36:288–292. doi:10.1016/j.biocontrol.2005.09.018

    Article  CAS  Google Scholar 

  18. Salama HS, Foda MS, Selim MH, Sharaby EI (1983) A Utilization of fodder yeast and agro-industrial by-products in production of spores and biologically—active endotoxins from Bacillus thuringiensis. Zentralbl Mikrobiol 138:553–563

    PubMed  CAS  Google Scholar 

  19. Smith RA (1982) Effect of strain and medium variation on mosquito toxin production by Bacillus thuringiensis var.israelensis. Can J Microbiol 28:1089–1092

    Article  PubMed  CAS  Google Scholar 

  20. Su T, Mulla MS (1999) Field evaluation of new water-dispersible granular formulations of Bacillus thuringiensis ssp. israelensis and Bacillus sphaericus against Culex mosquitoes in microcosms. J Am Mosq Control Assoc 15:356–365

    PubMed  CAS  Google Scholar 

  21. Thanabalu T, Berry C, Hindley J (1993) Cytotoxicity and ADP-ribosylating activity of the mosquitocidal toxin from Bacillus sphaericus SSII-1: possible roles of the 27- and 70-kilodalton peptides. J Bacteriol 175:2314–2320

    PubMed  CAS  Google Scholar 

  22. Wirth MC, Delecluse A, Federici ABA, Walton WE (1998) Variables cross–resistance to cry 11B from Bacillus thuringiensis subsp jegathesan in Culex quinquefasiatus (Diptera: Culicidae) resistant to single or multiple toxins of Bacillus thuringiensis subsp. israelensis. Appl Environ Microbiol 64:4174–4179

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are thankful to Dr. M. Kalyanasundaram, Officer-in-Charge, VCRC, Puducherry, for his support and critical suggestions. We thank Dr. S. Subramanian and Dr. P. Vanamail for their help in statistical analysis. We thank Mr. S. Venugopalan, Lab. Technician and other technical staff of the Unit of Microbiology and Immunology division, VCRC, for their assistance during the course of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Prabakaran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prabakaran, G., Hoti, S.L. Influence of amino nitrogen in the culture medium enhances the production of δ-endotoxin and biomass of Bacillus thuringiensis var. israelensis for the large-scale production of the mosquito control agent. J Ind Microbiol Biotechnol 35, 961–965 (2008). https://doi.org/10.1007/s10295-008-0370-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-008-0370-5

Keywords

Navigation