Skip to main content
Log in

Molecular and phenotypic comparison of phaeochromycin-producing strains of Streptomyces phaeochromogenes and Streptomyces ederensis

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Streptomyces strain LL-P018 produces the phaeochromycins, novel anti-inflammatory polyketides. This organism was identified as a strain of Streptomyces phaeochromogenes by physiological and genetic taxonomic analysis. In order to gain greater taxonomic perspective, LL-P018 was compared to related strains from major culture collections by 16S rRNA gene sequence, ribotype, HPLC–MS metabolite profile, and rpoB sequence. Using BioNumerics software, genetic and chemical fingerprint data were integrated via multivariate cluster analysis into a single, robust comparison. Based upon this analysis, strain LL-P018 is very closely related to the type strains of both S. phaeochromogenes and Streptomyces ederensis, indicating that these two types may in fact represent a single species. This novel comparative multi-cluster analysis is most useful for clarifying relationships between closely related species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Altschul SF et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402

    Article  PubMed  CAS  Google Scholar 

  2. Anderson AS, Wellington EMH (2001) The taxonomy of Streptomyces and related genera. Int J Syst Evol Microbiol 51(3): 797–814

    PubMed  CAS  Google Scholar 

  3. Anzai Y, Okuda T, Watanabe J (1997) Application of the random amplified polymorphic DNA using the polymerase chain reaction for efficient elimination of duplicate strains in microbial screening. II. Actinomycetes. J Antibiot 50(4):C-1

    Google Scholar 

  4. Baltz RH (1997) Lipopeptide antibiotics produced by Streptomyces roseosporus and Streptomyces fradiae. In: Strohl WR (ed) Drugs and the pharmaceutical sciences. Marcel Dekker, New York, pp 415–435

    Google Scholar 

  5. Baltz RH (2006) Marcel faber roundtable: is our antibiotic pipeline unproductive because of starvation, constipation or lack of inspiration? J Ind Microbiol Biotechnol 33(7):507–513

    Article  CAS  Google Scholar 

  6. Beijerinck MW (1900) Ueber Chinonbildung durch Streptothrix chromogena und Lebensweise dieses Mikroben. Centr Bakteriol Parasitenk Abt II 6:2–12. Cited In: Waksman and Curtis (1916) and Waksman (1959)

  7. Bruce J (1996) Automated system rapidly identifies and characterizes microorganisms in food. Food Technol 50:77–81

    Google Scholar 

  8. Challis GL, Hopwood DA (2003) Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species. Proc Natl Acad Sci USA 100(suppl 2):14555–14561

    Article  PubMed  CAS  Google Scholar 

  9. Chater KF, Bibb MJ (1997) Regulation of bacterial antibiotic production. In: Kleinkauf H, Von Doehren H (eds) Biotechnology, 2nd edn. Wiley, Weinheim, pp 57–105

    Chapter  Google Scholar 

  10. Clardy J, Fischbach MA, Walsh CT (2006) New antibiotics from bacterial natural products. Nat Biotechnol 24(12):1541–1550

    Article  PubMed  CAS  Google Scholar 

  11. Conn HJ (1917) Soil flora studies. V. Actinomycetes in soil. NY Agr Exp Sta Tech Bull 60:1–16

    Google Scholar 

  12. Graziani EI et al (2005) Phaeochromycins A–E, anti-inflammatory polyketides isolated from the soil actinomycete Streptomyces phaeochromogenes LL-P018. J Nat Prod 68(8):1262–1265

    Article  PubMed  CAS  Google Scholar 

  13. Hansen JN (1997) Nisin and related antimicrobial peptides. In: Strohl WR (ed) Drugs and the pharmaceutical sciences. Marcel Dekker, New York, pp 437–470

    Google Scholar 

  14. Jack R, Gotz F, Jung G (1997) Lantibiotics. In: Kleinkauf H, Von Doehren H (eds) Biotechnology, 2nd edn. Wiley, Weinheim, pp 323–368

    Google Scholar 

  15. Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HH (ed) Mammalian protein metabolism. Academic Press, New York, pp 21–132

    Google Scholar 

  16. Kim BJ et al (2004) Phylogenetic analysis of the genera Streptomyces and Kitasatospora based on partial RNA polymerase beta-subunit gene (rpoB) sequences. Int J Syst Evol Microbiol 54(Pt 2):593–598

    Article  PubMed  CAS  Google Scholar 

  17. Kotlyarov A et al (1999) MAPKAP kinase 2 is essential for LPS-induced TNF-alpha biosynthesis. Nat Cell Biol 1(2):94–97

    Article  PubMed  CAS  Google Scholar 

  18. Lanoot B et al (2005) Grouping of streptomycetes using 16S-ITS RFLP fingerprinting. Res Microbiol 156(5–6):755–762

    Article  PubMed  CAS  Google Scholar 

  19. Mankelow DP, Neilan BA (2000) Non-ribosomal peptide antibiotics. Exp Oper Therap Pat 10(10):1583–1591

    Article  CAS  Google Scholar 

  20. Nicas TI, Cooper RDG (1997) Vancomycin and other glycopeptides. In: Strohl WR (ed) Drugs and the pharmaceutical sciences. Marcel Dekker, New York, pp 363–392

    Google Scholar 

  21. Pearson K (1926) On the coefficient of racial likeness. Biometrika 18:105–1171

    Google Scholar 

  22. Pfaller MA et al (1996) Comparative evaluation of an automated ribotyping system versus pulsed-field gel electrophoresis for epidemiological typing of clinical isolates of Escherichia coli and Pseudomonas aeruginosa from patients with recurrent gram-negative bacteremia. Diagn Microbiol Infect Dis 25(1):1–8

    Article  PubMed  CAS  Google Scholar 

  23. Piepersberg W, Distler J (1997) Aminoglycosides and sugar components in other secondary metabolites. In: Kleinkauf H, Von Doehren H (eds) Biotechnology, 2nd edn. Wiley, Weinheim, pp 397–488

    Google Scholar 

  24. Reysenbach AL, Wickham GS, Pace NR (1994) Phylogenetic analysis of the hyperthermophilic pink filament community in Octopus Spring, Yellowstone National Park. Appl Environ Microbiol 60(6):2113–2119

    PubMed  CAS  Google Scholar 

  25. Ritacco FV et al (2003) Dereplication of Streptomyces soil isolates and detection of specific biosynthetic genes using an automated ribotyping instrument. J Ind Microbiol Biotechnol 30(8):472–479

    Article  PubMed  CAS  Google Scholar 

  26. Rullmann W (1895) Chemisch-bakteriologische Untersuchungen von Zwischendeckenfüllungen, mit besonderer Berücksichtigung von Cladothrix odorifera. Universität München. Cited in Waksman and Curtis (1916) and Waksman (1959): Munich, Germany

  27. Schatz A, Bugie E, Waksman SA (1944) Streptomycin, a substance exhibiting antibiotic activity against gram-positive and gram-negative bacteria. Proc Soc Exp Biol Med 55:66–69

    CAS  Google Scholar 

  28. Sehgal SN, Baker H, Vezina C (1975) Rapamycin (AY–22,989), a new antifungal antibiotic. II. Fermentation, isolation and characterization. J Antibiot (Tokyo) 28(10):727–732

    CAS  Google Scholar 

  29. Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16(3):313–340

    Article  Google Scholar 

  30. Strohl WR (1997) Industrial antibiotics: today and the future. In: Strohl WR (ed) Drugs and the pharmaceutical sciences. Marcel Dekker, New York, 1–47

    Google Scholar 

  31. Thompson JD et al (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25(24):4876–4882

    Article  PubMed  CAS  Google Scholar 

  32. Ueda K et al (1999) Two distinct mechanisms cause heterogeneity of 16S rRNA. J Bacteriol 181(1):78–82

    PubMed  CAS  Google Scholar 

  33. Van de Peer Y, De Wachter R (1994) TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci 10(5):569–570

    PubMed  Google Scholar 

  34. Vauterin L, Vauterin P (2006) Integrated databasing and analysis. In: Stackebrandt E (ed) Molecular identification, systematics, and population structure of prokaryotes. Springer, Heidelberg, 141–217

    Google Scholar 

  35. Waksman SA (1959) The actinomycetes, vol 1. Nature, occurrence, and activities, vol 1. Wilkins, Baltimore

  36. Waksman SA, Curtis RE (1916) The actinomyces of the soil. Soil Sci 1:99–134

    Article  CAS  Google Scholar 

  37. Waksman SA, Woodruff HB (1942) Streptothricin, a new selective bacteriostatic and bactericidal agent, particularly active against gram-negative bacteria. Proc Soc Exp Biol Med 49:207–210

    CAS  Google Scholar 

  38. Walsh CT (2003) Antibiotics: actions, origins, resistance. Washington DC, ASM Press

    Google Scholar 

  39. Walsh CT (2004) Polyketide and nonribosomal peptide antibiotics: modularity and versatility. Science 303(5665):1805–1810

    Article  PubMed  CAS  Google Scholar 

  40. Wink J (2002) The Actinomycetales: an order in the class of Actinobacteria important to the pharmaceutical industry- electronic manual. CD-Rom Provided by Dr, Joachim Wink, Aventis Pharma Deutschland GmbH

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Kyle Kingsley (Applied Maths, Austin, TX, USA) and David Labeda (United States Department of Agriculture, Peoria, IL, USA) for assistance with taxonomic experiments, Jan Kieleczawa for DNA sequencing, and Leonard McDonald for chemistry advice and assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank V. Ritacco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ritacco, F.V., Eveleigh, D.E. Molecular and phenotypic comparison of phaeochromycin-producing strains of Streptomyces phaeochromogenes and Streptomyces ederensis . J Ind Microbiol Biotechnol 35, 931–945 (2008). https://doi.org/10.1007/s10295-008-0367-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-008-0367-0

Keywords

Navigation