Skip to main content
Log in

Chemostat selection of a bacterial community able to degrade s-triazinic compounds: continuous simazine biodegradation in a multi-stage packed bed biofilm reactor

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Using a successive transfer method on mineral salt medium containing simazine, a microbial community enriched with microorganisms able to grow on simazine was obtained. Afterwards, using a continuous enrichment culture procedure, a bacterial community able to degrade simazine from an herbicide formulation was isolated from a chemostat. The continuous selector, fed with a mineral salt medium containing simazine and adjuvants present in the commercial herbicide formulation, was maintained in operation for 42 days. Following the lapse of this time, the cell count increased from 5 × 105 to 3 × 108 CFU mL−1, and the simazine removal efficiency reached 96%. The chemostat’s bacterial diversity was periodically evaluated by extracting the culture’s bacterial DNA, amplifying their 16S rDNA fragments and analyzing them by thermal gradient gel electrophoresis. Finally, a stable bacterial consortium able to degrade simazine was selected. By PCR amplification, sequencing of bacterial 16S rDNA amplicons, and comparison with known sequences of 16S rDNA from the NCBI GenBank, eight bacterial strains were identified. The genera, Ochrobactrum, Mycobacterium, Cellulomonas, Arthrobacter, Microbacterium, Rhizobium and Pseudomonas have been reported as common degraders of triazinic herbicides. On the contrary, we were unable to find reports about the ability of the genus Pseudonocardia to degrade triazinic compounds. The selected bacterial community was attached to a porous support in a concurrently aerated four-stage packed-bed reactor fed with the herbicide. Highest overall simazine removal efficiencies η SZ were obtained at overall dilution rates D below 0.284 h−1. However, the multistage packed bed reactor could be operated at dilution rates as high as D = 3.58 h−1 with overall simazine removal volumetric rates R v,SZ = 19.6 mg L−1 h−1, and overall simazine removal specific rates R X,SZ = 13.48 mg (mg cell protein)−1 h−1. Finally, the consortium’s ability to degrade 2-chloro-4,6-diamino-1,3,5-triazine (CAAT), cyanuric acid and the herbicide atrazine, pure or mixed with simazine, was evaluated in fed batch processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Adams CD, Randtke SJ (1992) Ozonation byproducts of atrazine in synthetic and natural waters. Environ Sci Technol 26:2218–2227

    Article  CAS  Google Scholar 

  2. Albrecht K, Frisch G (1989) Liquid pesticidal compositions in the form of suspension concentrates. US Patent 4,804,399

  3. Albrecht K, Frisch G (1992) Liquid herbicidal mixed formulations. US Patent 5,152,823

  4. Balbus J (2002) Water quality and water resources. In: Michell M (ed) Life support. The environment and human health. MIT Press, USA

  5. Baranowska I, Barchanska H, Pyrsz A (2005) Distribution of pesticides and heavy metals in trophic chain. Chemosphere 60(11):1590–1599

    Article  CAS  Google Scholar 

  6. Chung KH, Ro KS, Roy D (1996) Fate and enhancement of atrazine biotransformation in anaerobic wetland sediment. Water Res 30(2):341–346

    Article  CAS  Google Scholar 

  7. De Souza LM, Sadowsky JM, Wackett LP (1996) Atrazine chlorohydrolase from Pseudomonas sp. strain ADP: gene sequence, enzyme purification and protein characterization. J Bacteriol 178(16):4894–4900

    Google Scholar 

  8. Dombek T, Davis D, Stine J, Klarup D (2004) Degradation of terbutylazine (2-chloro-4-ethylamino-6-terbutylamino-1,3,5-triazine), deisopropyl atrazine (2-amino-4-chloro-6-ethylamino-1,3,5-triazine), and chlorinated dimethoxy triazine (2-chloro-4,6-dimethoxy-1,3,5-triazine) by zero valent iron and electrochemical reduction. Environ Pollut 129(2):267–275

    Article  CAS  Google Scholar 

  9. Eichner CA, Erb RW, Timmis KN, Wagner-Döbler I (1999) Thermal gradient gel electrophoresis analysis of bioprotection from pollutant shocks in the activated sludge microbial community. Appl Environ Microbiol 65(1):102–109

    CAS  Google Scholar 

  10. Eke KR, Barnden AD, Tester DJ (1996) Impact of agricultural pesticides on water quality. In: Hester RE, Harrison RM (eds) Agricultural chemicals and the environment. Issues in environmental science and technology, vol 5. The Royal Society of Chemistry, UK

  11. Farré MJ, Franch MI, Malato S, Ayllón JA, Peral J, Doménech X (2005) Degradation of some biorecalcitrant pesticides by homogeneous and heterogeneous photocatalytic ozonation. Chemosphere 58(8):1127–1133

    Article  CAS  Google Scholar 

  12. Feakin SJ, Blackburn E, Burns RG (1995) Inoculation of granular activated carbon in a fixed bed with s-triazine-degrading bacteria as a water treatment process. Water Res 29(3):819–825

    Article  CAS  Google Scholar 

  13. Felske A, Engelen B, Nübel U, Backhaus H (1996) Direct ribosome isolation from soil to extract bacterial rRNA for community analysis. Appl Environ Microbiol 62:4162–4167

    CAS  Google Scholar 

  14. Fragoeiro S, Magan S (2005) Enzymatic activity, osmotic stress and degradation of pesticide mixtures in soil extract liquid broth inoculated with Phanerochaete chrysosporium and Trametes versicolor. Environ Microbiol 7(3):348–355

    Article  CAS  Google Scholar 

  15. Gonzalez-Barreiro O, Rioboo C, Herrero C, Cid A (2006) Removal of triazine herbicides from freshwater systems using photosynthetic microorganisms. Environ Pollut 144(1):266–271

    Article  CAS  Google Scholar 

  16. Grigg BC, Bianchi CL, Pirola C, Ragaini V, Selli E. (2006) Mechanism and efficiency of atrazine degradation under combined oxidation processes. Appl Catal B Environ 64(1–2):31–138

    Google Scholar 

  17. Grigg BC, Bischoff M, Turco RF (1997) Cocontaminant effects on degradation of triazine herbicides by a mixed microbial culture. J Agric Food Chem 45(3):995–1000

    Article  CAS  Google Scholar 

  18. Gunasekara AS, Troiano J, Goh KS Tjeerdema RS (2007) Chemistry and fate of simazine. Rev Environ Contam Toxicol 189:1–23

    Article  CAS  Google Scholar 

  19. Hong C, Shimomura-Shimizu M, Muroi M, Tanamoto K (2004) Effect of endocrine disrupting chemicals on lipopolysaccharide-induced tumor necrosis factor-ALPHA- and nitric oxide production by mouse macrophages. Biol Pharm Bull 27(7):1136–1139

    Article  CAS  Google Scholar 

  20. Igarashi A, Ohtsu S, Muroi M, Tanamoto K (2006) Effects of possible endocrine disrupting chemicals on bacterial component-induced activation of NF-κB. Biol Pharm Bull 29(10):2120–2122

    Article  CAS  Google Scholar 

  21. Ioannis K, Theophanis S, Vasileios S, Albanis TA (2001) Photocatalytic Degradation of selected S-triazine herbicides and organophosphorus insecticides over aqueous TiO2 suspensions. Environ Sci Technol 35(2):398–405

    Article  CAS  Google Scholar 

  22. Jiang H, Adams C (2006) Treatability of chloro-s-triazines by conventional drinking water treatment technologies. Water Res 40(6):1657–1667

    Article  CAS  Google Scholar 

  23. Kilroy KC, Watkins SA (1997) Pesticides in surface water, bottom sediment, crayfish, and shallow ground water in Las Vegas Valley area, Carson River Basin, and Truckee River Basin, Nevada and California, 1992–1995, US Geological Survey Fact Sheet FS-075–97

  24. Kodama T, Ding L, Yoshida M, Yajima M (2001) Biodegradation of an s-triazine herbicide, simazine. J Mol Catal B Enzym 11(4–6):1073–1078

    Article  CAS  Google Scholar 

  25. Kontchou CY, Gschwind N (1999) Biodegradation of s-triazine compounds by a stable mixed bacterial community. Ecotoxicol Environ Saf 43(1):47–56

    Article  CAS  Google Scholar 

  26. Laabs V, Wehrhan A, Pinto A, Dores E, Amelung W (2007) Pesticide fate in tropical wetlands of Brazil: An aquatic microcosm study under semi-field conditions. Chemosphere 67(5):975–989

    Article  CAS  Google Scholar 

  27. Lai M-S, Weber AS, Jensen JN (1995) Oxidation of simazine: Biological oxidation of simazine and its chemical oxidation byproducts. Water Environ Res 67(3):347–354

    Article  CAS  Google Scholar 

  28. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin-Phenol reagents. J Biol Chem 193:265–275

    CAS  Google Scholar 

  29. Ma J, Graham NJD (2000) Degradation of atrazine by manganese-catalysed ozonation: influence of radical scavengers. Water Res 34(15):3822–3828

    Article  CAS  Google Scholar 

  30. Matamoros V, Puigagut J, García J, Bayona JM (2007) Behavior of selected priority organic pollutants in horizontal subsurface flow constructed wetlands: A preliminary screening. Chemosphere 69(9):1374–1380

    Article  CAS  Google Scholar 

  31. Maurino V, Minero C, Pelizzetti E (1997) Heterogeneous photocatalytic transformations of s-triazine derivatives. Res Chem Intermed 23(4):291–310

    Article  CAS  Google Scholar 

  32. Menne H, Köcher H (2007) HRAC classification of herbicides and resistance development. In: Krämer W, Schirmer U (eds) Modern crop protection compounds. Wiley-VCH, Weinheim

    Google Scholar 

  33. Meunier L, Canonica S, von Gunten U (2006) Implications of sequential use of UV and ozone for drinking water quality. Water Res 40(9):1864–1876

    Article  CAS  Google Scholar 

  34. Minero C, Pelizzetti E, Malato S, Blanco J (1996) Large solar plant photocatalytic water decontamination: degradation of atrazine. Solar Energy 56(5):411–419

    Article  CAS  Google Scholar 

  35. Nishimura K, Yamamoto M, Nakagomi T, Takiguchi Y, Naganuma T, Uzuka Y (2002) Biodegradation of triazine herbicides on polyvinylalcohol gel plates by the soil yeast Lipomyces starkeyi. Appl Microbiol Biotechnol 58:848–852

    Article  CAS  Google Scholar 

  36. Norris RF (1982) Action and fate of adjuvants in plants. In: Adjuvants for Herbicides, WSSA, Champaign, IL, pp 68–83

  37. Parr JF, Norman AG (1965) Considerations in the use of surfactants in plant systems: A review. Bot Gazz 126(2):86–96

    Article  CAS  Google Scholar 

  38. Ralebitso KT, Senior E, van Venserfeld HW (2002) Microbial aspects of atrazine degradation in natural environments. Biodegrad 13:11–19

    Article  Google Scholar 

  39. Relman DA (1993) Universal bacterial 16S rDNA amplification and sequencing. In: Persing HD, Smith TF, Tenover CF, White ST (eds) Diagnostic molecular microbiology. Principles and applications. American Chemical Society, Washington DC

  40. Saez F, Pozo C, Gomez MA, Martinez-Toledo MV, Rodelas B, Gonzalez-Lopez J (2006) Growth and denitrifying activity of Xanthobacter autotrophicus CECT 7064 in the presence of selected pesticides. Appl Microbiol Biotechnol 71(4):563–567

    Article  CAS  Google Scholar 

  41. Sanderson JT, Letcher RJ, Heneweer M, Giesy JP, van den Berg M (2001) Effects of chloro-s-triazine herbicides and metabolites on aromatase activity in various human cell lines and on vitellogenin production in male carp hepatocytes. Environ Health Perspect 109(10):1027–1031

    Article  CAS  Google Scholar 

  42. Satsuma K, Kameshiro M, Hayashi O, Sato K, Kato Y (2006) Characterization of a Nocardioides based, atrazine-mineralizing microbial colony isolated from Japanese riverbed sediment. J Pestic Sci 31(4):420–423

    Article  CAS  Google Scholar 

  43. Strong CL, Rosendahl C, Johnson G, Sadowsky JM, Wacket LP (2002) Arthrobacter aurescens TC1 metabolizes diverse s-triazine ring compounds. Appl Environ Microbiol 68(12):5973–5980

    Article  CAS  Google Scholar 

  44. U.S. Environmental Protection Agency (1996) Drinking water regulations and health advisories: US Environmental Protection Agency, Office of Water, Report EPA-822-B-96-002

  45. Udiković-Kolić N, Hršak D, Kolar AB, Petrić I, Stipičevic S, Soulas G, Martin-Laurent F (2007) Combined metabolic activity within an atrazine-mineralizing community enriched from agrochemical factory soil. Int Biodeterior Biodegradation 60(4):299–307

    Article  CAS  Google Scholar 

  46. Weisburg WC, Barns SM, Pelletier DA, Lane DS (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    CAS  Google Scholar 

  47. Zhang J, Chiao C (2002) Novel Approaches for remediation of pesticide pollutants. Int J Environ Pollut 18(5):423–433

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank COFAA-IPN for fellowships to C. Juárez-Ramírez, N. Ruiz-Ordaz, E. Curiel-Quesada and J. Galíndez-Mayer, to SIP-IPN for financial support and to Conacyt for graduate scholarships to M-P, M.E. and T-G, A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Galíndez-Mayer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mondragón-Parada, M.E., Ruiz-Ordaz, N., Tafoya-Garnica, A. et al. Chemostat selection of a bacterial community able to degrade s-triazinic compounds: continuous simazine biodegradation in a multi-stage packed bed biofilm reactor. J Ind Microbiol Biotechnol 35, 767–776 (2008). https://doi.org/10.1007/s10295-008-0347-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-008-0347-4

Keywords

Navigation