Skip to main content
Log in

Predicting enzyme behavior in nonconventional media: correlating nitrilase function with solvent properties

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

The insolubility of nitrile substrates in aqueous reaction mixture decreases the enzymatic reaction rate. We studied the interaction of fourteen water miscible organic solvents with immobilized nitrile hydrolyzing biocatalyst. Correlation of nitrilase function with physico–chemical properties of the solvents has allowed us to predict the enzyme behavior in such non-conventional media. Addition of organic solvent up to a critical concentration leads to an enhancement in reaction rate, however, any further increase beyond the critical concentration in the latter leads to the decrease in catalytic efficiency of the enzyme, probably due to protein denaturation. The solvent dielectric constant (ε) showed a linear correlation with the critical concentration of the solvent used and the extent of nitrile hydrolysis. Unlike alcohols, the reaction rate in case of aprotic solvents could be linearly correlated to solvent log P. Further, kinetic analysis confirmed that the affinity of the enzyme for its substrate (K m) was highly dependent upon the aprotic solvent used. Finally, the prospect of solvent engineering also permitted the control of enzyme enantioselectivity by regulating enantiomer traffic at the active site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Banerjee A, Kaul P, Banerjee U (2006) Purification and characterization of an enantioselective arylacetonitrilase from Pseudomonas putida. Arch Microbiol 184:407–418

    Article  CAS  Google Scholar 

  2. Banerjee A, Sharma R, Banerjee U (2002) Nitrile degrading enzymes: current status and future prospects. Appl Microbiol Biotechnol 60:33–44

    Article  CAS  Google Scholar 

  3. Kobayashi M, Shimizu S (2000) Nitrile hydrolases. Curr Opin Chem Biol 4:95–102

    Article  CAS  Google Scholar 

  4. Kaul P, Banerjee A, Mayilraj S, Banerjee U (2004) Screening for enantioselective nitrilases: kinetic resolution of racemic mandelonitrile to (R)-mandelic acid by new bacterial isolates. Tet Assy 15:207–211

    Article  CAS  Google Scholar 

  5. Banerjee A, Kaul P, Banerjee UC (2006) Enhancing the catalytic potential of nitrilase from Pseudomonas putida for enantioselective nitrile hydrolysis. Appl Microbiol.Biotechnol 72:77–87

    Article  CAS  Google Scholar 

  6. Kaul P, Banerjee A, Banerjee U (2006) Enantioselective nitrile hydrolysis by immobilized whole-cell biocatalyst. Biomacromolecules 7:1536–1541

    Article  CAS  Google Scholar 

  7. Layh N, Willetts A (1988) Enzymatic nitrile hydrolysis in low water systems. Biotechnol Lett 20:329–331

    Article  Google Scholar 

  8. Klibanov A (2001) Improving enzymes by using them in organic solvents. Nature 409:241–246

    Article  CAS  Google Scholar 

  9. Yamamoto K, Oishi K, Fujimatsu I, Komatsu K (1991) Production of R-(-)-mandelic acid from mandelonitrile by Alcaligenes faecalis ATCC 8750. Appl Environ Microbiol 10:3028–3032

    Google Scholar 

  10. Yamamoto K, Fujimatsu I, Komatsu KI (1992) Purification and characterization of the nitrilase from Alcaligenes faecalis ATCC 8750 responsible for enantioselective hydrolysis of mandelonitrile. J Ferment Bioeng 73:425–430

    Article  CAS  Google Scholar 

  11. Liese A (2006) Industrial biotransformations, 2nd edn. Wiley-VCH, Weinheim

    Google Scholar 

  12. Kaul P, Stolz A, Banerjee UC (2007) Cross-linked amorphous nitrilase aggregates for enantioselective nitrile hydrolysis. Adv Synth Catal 349:2167–2176

    Article  CAS  Google Scholar 

  13. Terreni M, Pegani G, Ubiali D, Fernandez R, Mateo C, Guisan JM (2001) Modulation of penicillin acylase properties via immobilization techniques: one-pot chemoenzymatic synthesis of cephamandole from cephalosporin C. Bioorg Med Chem Lett 11:2429–2432

    Article  CAS  Google Scholar 

  14. Furlenmeier A, Quitt P, Vogler K, Lanz P (1976) 6-Acyl derivatives of aminopenicillanic acid US Patent. Hoffmann-La Roche Inc., Nutley

    Google Scholar 

  15. Kinbara K, Sakai K, Hashimoto Y, Nohira H, Saigo K (1996) Design of resolving reagents: p-substituted mandelic acids as resolving reagents for 1-arylalkylamines. Tet Assy 7:1539–1542

    Article  CAS  Google Scholar 

  16. Surivet JP, Vatele JM (1999) Total synthesis of antitumor goniothalamus styryllactones. Tetrahedron 55:13011–1328

    Article  CAS  Google Scholar 

  17. Mills J, Schmiegel KK, Shaw WN (1983) Phenethanolamines, compositions containing the same and method for effecting weight control. Eli Lilly and Company, Greenfield

    Google Scholar 

  18. Reichardt C (1988) Solvent and solvent effects in organic chemistry. VCH, New York

    Google Scholar 

  19. Rekker R (1977) The hydrophobic fragmental constant. Elsevier, New York

    Google Scholar 

  20. Perutz M (1978) Electrostatics effects on protein. Science 201:1187–1191

    Article  CAS  Google Scholar 

  21. Affleck R, Haynes C, Clark D (1992) Solvent dielectric effects on protein dynamics. Proc Natl Acad Sci USA 89:5167–5170

    Article  CAS  Google Scholar 

  22. Fitzpatrick P, Klibanov A (1991) How can the solvent affect enzyme enantioselectivity. J Am Chem Soc 113:3166–3171

    Article  CAS  Google Scholar 

  23. Wescott C, Klibanov A (1993) Solvent variation inverts substrate specificity of an enzyme. J Am Chem Soc 115:1629–1631

    Article  CAS  Google Scholar 

  24. Zaks A, Klibanov A (1986) Substrate specificity of enzymes in organic solvents vs. water is reversed. J Am Chem Soc 108:2767–2768

    Article  CAS  Google Scholar 

  25. Wescott C, Klibanov A (1997) Thermodynamic analysis of solvent effect on substrate specificity of lyophilized enzymes suspended in organic media. Biotechnol Bioeng 56:7294–7299

    Article  Google Scholar 

  26. Tawaki S, Klibanov A (1992) Inversion of enzyme enantioselectivity mediated by the solvent. J Am Chem Soc 114:1882–1884

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Praveen Kaul gratefully acknowledges financial assistance provided by Council of Scientific and Industrial Research, India. This is NIPER communication No. 379.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. C. Banerjee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaul, P., Banerjee, U.C. Predicting enzyme behavior in nonconventional media: correlating nitrilase function with solvent properties. J Ind Microbiol Biotechnol 35, 713–720 (2008). https://doi.org/10.1007/s10295-008-0332-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-008-0332-y

Keywords

Navigation