Skip to main content
Log in

Analysis of ldh genes in Lactobacillus casei BL23: role on lactic acid production

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Lactobacillus casei is a lactic acid bacterium that produces l-lactate as the main product of sugar fermentation via l-lactate dehydrogenase (Ldh1) activity. In addition, small amounts of the d-lactate isomer are produced by the activity of a d-hydroxycaproate dehydrogenase (HicD). Ldh1 is the main l-lactate producing enzyme, but mutation of its gene does not eliminate l-lactate synthesis. A survey of the L. casei BL23 draft genome sequence revealed the presence of three additional genes encoding Ldh paralogs. In order to study the contribution of these genes to the global lactate production in this organism, individual, as well as double mutants (ldh1 ldh2, ldh1 ldh3, ldh1 ldh4 and ldh1 hicD) were constructed and lactic acid production was assessed in culture supernatants. ldh2, ldh3 and ldh4 genes play a minor role in lactate production, as their single mutation or a mutation in combination with an ldh1 deletion had a low impact on l-lactate synthesis. A Δldh1 mutant displayed an increased production of d-lactate, which was probably synthesized via the activity of HicD, as it was abolished in a Δldh1 hicD double mutant. Contrarily to HicD, no Ldh1, Ldh2, Ldh3 or Ldh4 activities could be detected by zymogram assays. In addition, these assays revealed the presence of extra bands exhibiting d-/l-lactate dehydrogenase activity, which could not be attributed to any of the described genes. These results suggest that L. casei BL23 possesses a complex enzymatic system able to reduce pyruvic to lactic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aarnikunnas J, von Weymarn N, Ronnholm K, Leisola M, Palva A (2003) Metabolic engineering of Lactobacillus fermentum for production of mannitol and pure l-lactic acid or pyruvate. Biotechnol Bioeng 82:653–663

    Article  CAS  Google Scholar 

  2. Bongers RS, Hoefnagel MH, Starrenburg MJ, Siemerink MA, Arends JG, Hugenholtz J, Kleerebezem M (2003) IS981-mediated adaptive evolution recovers lactate production by ldhB transcription activation in a lactate dehydrogenase-deficient strain of Lactococcus lactis. J Bacteriol 185:4499–4507

    Article  CAS  Google Scholar 

  3. Ferain T, Schanck AN, Delcour J (1996) C-13 nuclear magnetic resonance analysis of glucose and citrate end products in an ldhL-ldhD double-knockout strain of Lactobacillus plantarum. J Bacteriol 178:7311–7315

    CAS  Google Scholar 

  4. Gaspar P, Neves AR, Ramos A, Gasson MJ, Shearman CA, Santos H (2004) Engineering Lactococcus lactis for production of mannitol: high yields from food-grade strains deficient in lactate dehydrogenase and the mannitol transport system. Appl Environ Microbiol 70:1466–1474

    Article  CAS  Google Scholar 

  5. Geueke B, Riebel B, Hummel W (2003) NADH oxidase from Lactobacillus brevis: a new catalyst for the regeneration of NAD. Enz Microb Technol 32:205–211

    Article  CAS  Google Scholar 

  6. Hols P, Kleerebezem M, Schanck AN, Ferain T, Hugenholtz J, Delcour J, de Vos WM (1999) Conversion of Lactococcus lactis from homolactic to homoalanine fermentation through metabolic engineering. Nature Biotechnol 17:588–592

    Article  CAS  Google Scholar 

  7. John RP, Nampoothiri KM, Pandey A (2007) Fermentative production of lactic acid from biomass: an overview on process developments and future perspectives. Appl Microbiol Biotechnol 74:524–534

    Article  CAS  Google Scholar 

  8. Kim SMF, Baek SJ, Pack MY (1991) Cloning and nucleotide sequence of the Lactobacillus casei lactate dehydrogenase gene. Appl Environ Microbiol 57:2413–2417

    CAS  Google Scholar 

  9. Ladero V, Ramos A, Wiersma A, Goffin P, Schanck A, Kleerebezem M, Hugenholtz J, Smid EJ, Hols P (2007) High-level production of the low-calorie sugar sorbitol by Lactobacillus plantarum through metabolic engineering. Appl Environ Microbiol 73:1864–1872

    Article  CAS  Google Scholar 

  10. Lapierre L, Germond JE, Ott A, Delley M, Mollet B (1999) d-Lactate dehydrogenase gene (ldhD) inactivation and resulting metabolic effects in the Lactobacillus johnsonii strains La1 and N312. Appl Environ Microbiol 65:4002–4007

    CAS  Google Scholar 

  11. Leloup L, Ehrlich SD, Zagorec M, Morel-Deville F (1997) Single-crossover integration in the Lactobacillus sake chromosome and insertional inactivation of the ptsI and lacL genes. Appl Environ Microbiol 63:2117–2123

    CAS  Google Scholar 

  12. Lerch HP, Blocker H, Kallwass H, Hoppe J, Tsai H, Collins J (1989) Cloning, sequencing and expression in Escherichia coli of the d-2-hydroxyisocaproate dehydrogenase gene of Lactobacillus casei. Gene 78:47–57

    Article  CAS  Google Scholar 

  13. Liu SQ, Nichols NN, Dien BS, Cotta MA (2006) Metabolic engineering of a Lactobacillus plantarum double ldh knockout strain for enhanced ethanol production. J Ind Microbiol Biotechnol 33:1–7

    Article  CAS  Google Scholar 

  14. Makarova K, Slesarev A, Wolf Y, Sorokin A, Mirkin B, Koonin E, Pavlov A, Pavlova N, Karamychev V, Polouchine N, Shakhova V, Grigoriev I, Lou Y, Rohksar D, Lucas S, Huang K, Goodstein DM, Hawkins T, Plengvidhya V, Welker D, Hughes J, Goh Y, Benson A, Baldwin K, Lee JH, Diaz-Muniz I, Dosti B, Smeianov V, Wechter W, Barabote R, Lorca G, Altermann E, Barrangou R, Ganesan B, Xie Y, Rawsthorne H, Tamir D, Parker C, Breidt F, Broadbent J, Hutkins R, O’Sullivan D, Steele J, Unlu G, Saier M, Klaenhammer T, Richardson P, Kozyavkin S, Weimer B, Mills D (2006) Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci USA 103:15611–15616

    Article  Google Scholar 

  15. Malleret C, Lauret R, Ehrlich SD, Morel-Deville F, Zagorec M (1998) Disruption of the sole ldhL gene in Lactobacillus sakei prevents the production of both l- and d-lactate. Microbiology 144:3327–3333

    CAS  Google Scholar 

  16. Neves AR, Ramos A, Shearman C, Gasson MJ, Almeida JS, Santos H (2000) Metabolic characterization of Lactococcus lactis deficient in lactate dehydrogenase using in vivo C-13-NMR. Eur J Biochem 267:3859–3868

    Article  CAS  Google Scholar 

  17. Nissen L, Pérez-Martínez G, Yebra MJ (2005) Sorbitol synthesis by an engineered Lactobacillus casei strain expressing a sorbitol-6-phosphate dehydrogenase gene within the lactose operon. FEMS Microbiol Lett 249:177–183

    Article  CAS  Google Scholar 

  18. Platteeuw C, Hugenholtz J, Starrenburg M, Vanalenboerrigter I, de Vos WM (1995) Metabolic engineering of Lactococcus Lactis: influence of the overproduction of alpha-acetolactate synthase in strains deficient in lactate dehydrogenase as a function of culture conditions. Appl Environ Microbiol 61:3967–3971

    CAS  Google Scholar 

  19. Viana R, Yebra MJ, Galán JL, Monedero V, Pérez-Martínez G (2005) Pleiotropic effects of lactate dehydrogenase inactivation in Lactobacillus casei. Res Microbiol 156:641–649

    Article  CAS  Google Scholar 

  20. Wisselink HW, Moers APHA, Mars AE, Hoefnagel MHN, de Vos WM, Hugenholtz J (2005) Overproduction of heterologous mannitol 1-phosphatase: a key factor for engineering mannitol production by Lactococcus lactis. Appl Environ Microbiol 71:1507–1514

    Article  CAS  Google Scholar 

Download references

Acknowledgments

J. Rico was recipient of a CSIC postgraduate fellowship partially funded by the Corporación Alimentaria Peñasanta. Genome sequencing of L. casei BL23 was carried out at the University of Caen, Laboratoire de Microbiologie de l’Environnement, at the INRA Thiverval-Grignon, Microbiologie et Génétique Moléculaire and at the Instituto de Agroquímica y Tecnología de Alimentos, CSIC, with the financial aide from the Region Basse Normandie and the INRA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicente Monedero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rico, J., Yebra, M.J., Pérez-Martínez, G. et al. Analysis of ldh genes in Lactobacillus casei BL23: role on lactic acid production. J Ind Microbiol Biotechnol 35, 579–586 (2008). https://doi.org/10.1007/s10295-008-0319-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-008-0319-8

Keywords

Navigation