Skip to main content
Log in

High cell density cultivation of Escherichia coli with surface anchored transglucosidase for use as whole-cell biocatalyst for α-arbutin synthesis

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

A fed-batch culture strategy for the production of recombinant Escherichia coli cells anchoring surface-displayed transglucosidase for use as a whole-cell biocatalyst for α-arbutin synthesis was developed. Lactose was used as an inducer of the recombinant protein. In fed-batch cultures, dissolved oxygen was used as the feed indicator for glucose, thus accumulation of glucose and acetate that affected the cell growth and recombinant protein production was avoided. Fed-batch fermentation with lactose induction yielded a biomass of 18 g/L, and the cells possessed very high transglucosylation activity. In the synthesis of α-arbutin by hydroquinone glucosylation, the whole-cell biocatalysts showed a specific activity of 501 nkat/g cell and produced 21 g/L of arbutin, which corresponded to 76% molar conversion. A sixfold increased productivity of whole cell biocatalysts was obtained in the fed-batch culture with lactose induction, as compared to batch culture induced by IPTG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bechwith JR (1987) The lactose operon. In: Neidhardt FC, Ingraham JL, Low KB, Magasanik B, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella typhimurium. Cellular and molecular biology, Vol 2. American Society for Microbiology, Washington, pp 1448

    Google Scholar 

  2. Donovan RS, Robinson CW, Glick BR (1996) Optimizing inducer and culture conditions for expression of foreign proteins under the control of the lac promoter. J Ind Microbiol 16:145–154

    Article  CAS  Google Scholar 

  3. Dybkaer R (2001) Unit “katal” for catalytic activity (IUPAC Technol Report). Pure Appl Chem 73:927–913

    Article  CAS  Google Scholar 

  4. Fu XY, Wei DZ, Tong WY (2006) Effect of yeast extract on the expression of thioredoxin-human parathyroid hormone from recombinant Escherichia coli. J Chem Technol Biotechnol 81:1866–1871

    Article  CAS  Google Scholar 

  5. Funayama M, Arakawa H, Yamamoto R, Nishino T, Shin T, Murao S (1995) Effect of α- and β-arbutin on activity of tyrosinases from mushroom and mouse melanoma. Biosci Biotechol Biochem 59:143–144

    Article  CAS  Google Scholar 

  6. Gombert AK, Kilikian BV (1998) Recombinant gene expression in Escherichia coli cultivation using lactose as inducer. J Biotechnol 60:47–54

    Article  CAS  Google Scholar 

  7. Hoffman BJ, Broadwater JA, Johnson P, Harper J, Fox BG, Kenealy WR (1995) Lactose fed-batch overexpressioon of recombinant metalloproteins in Escherichia coli BL21(DE3): process control yielding high levels of metal-incorporated, soluble protein. Protein Expr Purif 6:646–654

    Article  CAS  Google Scholar 

  8. Hori I, Nihei KI, Kubo I (2004) Structural criteria for depigmenting mechanism of arbutin. Phytother Res 18:475–479

    Article  CAS  Google Scholar 

  9. Inomata S, Yokoyama M, Seto S, Yanagi M (1991) High-level production of arbutin from hydroquinone in suspension cultures of Catharanthus roseus plant cells. Appl Microbiol Biotechnol 36:315–319

    Article  CAS  Google Scholar 

  10. Jung HC, Lebeault JM, Pan JG (1998) Surface display of Zymomonas mobilis levansucrase by using the ice-nucleation protein of Pseudomonas syringae. Nat Biotechnol 16:576–580

    Article  CAS  Google Scholar 

  11. Jung HC, Park JH, Park SH, Lebeault JM, Pan JG (1998) Expression of carboxymethylcellulase on the surface of Escherichia coli using Pseudomonas syringae ice nucleation protein. Enzyme Microb Technol 22:348–354

    Article  CAS  Google Scholar 

  12. Kilikian BV, Suárez ID, Liria CW, Gombert AK (2000) Process strategies to improve heterologous protein production in Escherichia coli under lactose or IPTG induction. Process Biochem 35:1019–1025

    Article  CAS  Google Scholar 

  13. Kitao S, Sekine H (1994) α-D-Glucosyl transfer to phenolic compounds by sucrose phosphorylase from Leuconostoc mesenteroides and production of α-arbutin. Biosci Biotechol Biochem 58:38–42

    CAS  Google Scholar 

  14. Kurosu J, Sato T, Yoshida K, Tsugane T, Shimura S, Kirimura K, Kino K, Usami S (2002) Enzymatic synthesis of α-arbutin by α-anomer-selective glucosylation of hydroquinone using lyophilized cells of Xanthomonas campestris WU-9701. J Biosci Bioeng 93:328–330

    Article  CAS  Google Scholar 

  15. Lutterbach R, Stöckigt J (1992) High-yield formation of arbutin from hydroquinone by cell-suspension cultures of Rauwolfia serpentine. Helv Chim Acta 75:2009–2011

    Article  CAS  Google Scholar 

  16. Maeda K, Fukuda M (1996) Arbutin: mechanism of its depigmenting action in human melanocyte culture. J Pharmacol Exp Ther 276:765–769

    CAS  Google Scholar 

  17. Neubauer P, Hofmann K, Holst O, Mattiasson B, Kruschke P (1992) Maximizing the expression of a recombinant gene in Escherichia coli by manipulation of induction time using lactose as inducer. Appl Microbiol Biotechnol 36:739–744

    Article  CAS  Google Scholar 

  18. Nishimura T, Kometani T, Takii H, Terada Y, Okada S (1994) Purification and some properties of α-amylase from Bacillus subtilis X-23 that glucosylates phenolic compounds such as hydroquinone. J Ferment Bioeng 78:31–36

    Article  CAS  Google Scholar 

  19. Richins RD, Kaneva I, Mulchandani A, Chen W (1997) Biodegradation of organophosphorus pesticides by surface-expressed organophosphorus hydrolase. Nat Biotechnol 15:984–987

    Article  CAS  Google Scholar 

  20. Shi H, Su WW (2001) Display of green fluorescent protein on Escherichia coli cell surface. Enzyme Microb Technol 28:25–34

    Article  CAS  Google Scholar 

  21. Shiloach J, Bauer S (1975) High yield growth of E. coli at different temperatures in a bench scale fermentor. Biotechnol Bioeng 17:227–239

    Article  CAS  Google Scholar 

  22. Shiloach J, Fass R (2005) Growing E. coli to high cell density—a historical perspective on method development. Biotechnol Adv 23:345–357

    Article  CAS  Google Scholar 

  23. Shimazu M, Mulchandani A, Chen W (2001) Cell surface display of organophosphorus hydrolase using ice nucleation protein. Biotechnol Prog 17:76–80

    Article  CAS  Google Scholar 

  24. Sugimoto K, Nishimura T, Nomura K, Sugimoto K, Kuriki T (2003) Syntheses of arbutin-α-glycosides and a comparison of their inhibitory effects with those of α-arbutin and arbutin on human tyrosinase. Chem Pharm Bull 51:798–801

    Article  CAS  Google Scholar 

  25. Sugimoto K, Nishimura T, Nomura K, Sugimoto K, Kuriki T (2004) Inhibitory effects of α-arbutin on melanin synthesis in cultured human melanoma cells and a three-dimensional human skin model. Biol Pharm Bull 27:510–514

    Article  CAS  Google Scholar 

  26. Wu PH, Giridhar R, Wu WT (2006) Surface display of transglucosidase on Escherichia coli by using the ice nucleation protein of Xanthomonas campestris and its application in glucosylation of hydroquinone. Biotechnol Bioeng 95:1138–1147

    Article  CAS  Google Scholar 

  27. Yokoyama M, Inomata S, Seto S, Yangi M (1990) Effects of sugars on the glucosylation of exogenous hydroquinone by Catharanthus roseus cells in suspension culture. Plant Cell Physiol 31:551–555

    CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by grants (NSC 94-2214-E-0016-016) and (NSC 95-2221-E-006-304) from National Science Council of Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Teng Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, PH., Nair, G.R., Chu, IM. et al. High cell density cultivation of Escherichia coli with surface anchored transglucosidase for use as whole-cell biocatalyst for α-arbutin synthesis. J Ind Microbiol Biotechnol 35, 95–101 (2008). https://doi.org/10.1007/s10295-007-0270-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-007-0270-0

Keywords

Navigation