Skip to main content

Advertisement

Log in

Antifouling activity of sessile bacilli derived from marine surfaces

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Marine biofilms are a virtually untapped source of bioactive molecules that may find application as novel antifoulants in the marine paint industry. This study aimed at determining the potential of marine biofilm bacteria to produce novel biomolecules with potential application as natural antifoulants. Nine representative strains were isolated from a range of surfaces and were grown in YEB medium and harvested during the late exponential growth phase. Bacterial biomass and spent culture medium were extracted with ethanol and ethyl acetate, respectively. Extracts were assayed for their antifouling activity using two tests: (1) antimicrobial well diffusion test against a common fouling bacterium, Halomonas marina, and (2) anti-crustacean activity test using Artemia salina. Our results showed that none of the ethanolic extracts (bacterial biomass) were active in either test. In contrast, most of the organic extracts had antimicrobial activity (88%) and were toxic towards A. salina (67%). Sequencing of full 16 S ribosomal DNA analysis showed that the isolates were related to Bacillus mojavensis and Bacillus firmus. Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF-MS) profiling of ethyl acetate extracts of culture supernatants showed that these species produce the bioactive lipopeptides surfactin A, mycosubtilin and bacillomycin D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bacon CW, Hinton DM (2002) Endophytic and biological control potential of Bacillus mojavensis and related species. Biol Control 23:274–284

    Article  CAS  Google Scholar 

  2. Baumann P, Baumann L (1981) The marine Gram-negative eubacteria; genera Photobacterium, Beneckea, Alteromonas, Pseudomonas, and Alcaligenes. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes. Berlin, Springer, pp 1302–1331

    Google Scholar 

  3. Benson DA, Boguski MS, Lipman DJ, Ostell J, Ouellette BFF, Rapp BA, Wheeler D (1999) GenBank. Nucleic Acids Res 27:12–17

    Article  CAS  Google Scholar 

  4. Burgess JG, Jordan M, Bregu M, Mearns-Spragg A, Boyd KG (1999) Microbial antagonism: a neglected avenue of natural products research. J Biotechnol 70:27–32

    Article  CAS  Google Scholar 

  5. Callow ME, Callow JA (2002) Marine biofouling: a sticky problem. Biologist 49:10–14

    Google Scholar 

  6. Dahms HU, Ying X, Pfeiffer C (2006) Antifouling potential of cyanobacteria: a minireview. Biofouling 22:317–327

    Article  CAS  Google Scholar 

  7. Felstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  8. Folmsbee M, Duncan K, Han SO, Nagle D, Jennings E, McInerney M (2006) Re-identification of the halotolerant, biosurfactant-producing Bacillus licheniformis strain JF-2 as Bacillus mojavensis strain JF-2. Syst Appl Microbiol 29:645–649

    Article  CAS  Google Scholar 

  9. Gontang EA, Fenical W, Jensen PR (2007) Phylogenetic diversity of Gram-Positive bacteria cultured from marine sediments. Appl Environ Microb 73:3272–3282

    Article  CAS  Google Scholar 

  10. He W, Puyvelde LV, Bosselaers J, De Kimpe N, Van der Flaas M, Roymnas A, Mathenge SG, Mudida FP, Chalo PB (2002) Activity of 6-pentadecylsalicylic acid from Ozoroa insignis against marine crustaceans. Pharm Biol 40:74–76

    Article  CAS  Google Scholar 

  11. Holmström C, James S, Egan S, Kjelleberg S (1996) Inhibition of common fouling organisms by pigmented marine bacterial isolates. Biofouling 10:251–259

    Article  Google Scholar 

  12. Holmström C, Kjelleberg S (1999) Marine Pseudoalteromonas species are associated with higher organisms and produce biologically active extracellular agents. FEMS Microbiol Ecol 30:285–293

    Google Scholar 

  13. Holmström C, Egan S, Franks A, Kjelleberg S (2002) Antifouling activities expressed by marine surface associated Pseudoalteromonas species. FEMS Microbiol Ecol 42:47–58

    Google Scholar 

  14. Ivanova EP, Vysotskii MV, Svetashev VI, Nedashkovskaya OI, Gorshkova NM, Mikhailov VV,Yumoto N, Shigeri Y, Taguchi T, Yoshikawa S (1999) Characterization of Bacillus strains of marine origin. Int Microbiol 2:267–271

    CAS  Google Scholar 

  15. Ivanova EP, Shevchenko LS, Sawabe T, Lysenko AM, Svetashev VI, Gorshkova NM, Satomi M, Christen R, Mikhailov VV (2002) Pseudoalteromonas maricaloris sp. nov., isolated from an Australian sponge, and reclassification of [Pseudoalteromonas aurantia] NCIMB 2033 as Pseudoalteromonas flavipulchra sp. nov. Int J Syst Evol Microbiol 52:263–271

    CAS  Google Scholar 

  16. Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism. Academic, New York, pp 211–232

    Google Scholar 

  17. Kalinovskaya NI, Kuznetsova TA, Ivanova EP, Romanenko LA, Voinov VG, Huth F, Laatsch H (2002) Characterization of surfactin-like cyclic depsipeptides synthesized by Bacillus pumilus from ascidian Halocynthia aurantium. Mar Biotechnol 4:179–188

    Article  CAS  Google Scholar 

  18. Lemos ML, Toranzo AE, Barja LJ (1986) Antibiotic activity of epiphytic bacteria isolated from intertidal sea-weeds. Microb Ecol 11:149–163

    Article  Google Scholar 

  19. Long RA, Azam F (2001) Antagonistic interactions among marine pelagic bacteria. Appl Environ Microb 67:4975–4983

    Article  CAS  Google Scholar 

  20. Maidak BL, Cole JR, Lilburn TG, Parker Jr CT, Farris RJ, Garrity GM, Olsen GJ, Schmidt TM, Tiedje JM (2001) The RPD II (Ribosomal database project). Nucleic Acids Res 29:173–174

    Article  CAS  Google Scholar 

  21. Maki JS, Rittschof D, Samuelsson MO, Szewzyk U, Yule AB, Kjelleberg S, Costlow JD, Mitchell R (1990) Effect of marine bacteria and their exopolymers on the attachment of barnacle cypris larvae. Bull Mar Sci 46:499–511

    Google Scholar 

  22. Meyer BN, Ferrigni NR, Putnam JE, Jacobsen LB, Nichols DE, McLaughlin JL (1982) Brine shrimp: a convenient general bioassay for active plant constituents. Planta Med 45:31–34

    Article  CAS  Google Scholar 

  23. MacLeod RA (1965) The question of the existence of specific marine bacteria. Bacteriol Rev 29:9–23

    CAS  Google Scholar 

  24. Narváez-Zapata J, Tebbe CC, Ortega-Morales BO (2005) Molecular diversity and biomass of ephilitic biofilms from intertidal rocky shore in the Gulf of Mexico. Biofilms 2:1–11

    Article  Google Scholar 

  25. Newbold R, Jensen P, Fenical W, Pawlik J (1999) Antimicrobial activity of caribbean sponge extracts. Aquat Microb Ecol 19:279–284

    Article  Google Scholar 

  26. Ortega-Morales BO, Santiago-García JL, Chan-Bacab MJ, Moppert X, Miranda-Tello E, Fardeau ML, Carrero JC, Bartolo-Pérez P, Valadéz-González A, Guezennec J (2007) Characterization of extracellular polymers synthesized by tropical intertidal biofilm bacteria. J Appl Microbiol 102:254–264

    Article  CAS  Google Scholar 

  27. Pabel CT, Vater J, Wilde C, Franke P, Hofemeister J, Adler B, Bringmann G, Hacker J, Hentschel U (2003) Antimicrobial activities and matrix-assisted laser desorption/ionization mass spectrometry of Bacillus isolates from the marine sponge Aplysina aerophoba. Mar Biotechnol 5:424–434

    Article  CAS  Google Scholar 

  28. Persoone G, Castritsi-Catharios J (1989) A simple bioassay with Artemia larvae to determine the acute toxicity of antifouling paints. Water Res 23:893–897

    Article  CAS  Google Scholar 

  29. Rao D, Webb JS, Kjelleberg S (2006) Microbial colonization and competition on the marine alga Ulva australis. Appl Environ Microbiol 72:5547–5555

    Article  CAS  Google Scholar 

  30. Rittschof D (2001) Natural product antifoulants and coating development. In: McClintock JB, Baker BJ (eds) Marine chemical ecology. CRC, Florida, pp 543–566

    Google Scholar 

  31. Roberts MS, Nakamura LK, Cohan FM (1994) Bacillus mojavensis sp. nov., distinguishable from Bacillus subtilis by sexual isolation, divergence in DNA sequence, and differences in fatty acid composition. Int J Syst Bacteriol 44:256–264

    Article  CAS  Google Scholar 

  32. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:405–425

    Google Scholar 

  33. Siefert JL, Larios-Sanz M, Nakamura LK, Slepecky RA, Paul JH, Moore ERB, Fox GE, Jurtshuk P Jr (2000) Phylogeny of marine Bacillus isolates from the Gulf of Mexico. Curr Microbiol 41:84–88

    Article  CAS  Google Scholar 

  34. Solís P, Wright C, Anderson M, Gupta M, Phillipson DA (1992) Microwell cytotoxic assay using Artemia salina (brine shrimp). Planta Med 45:250–251

    Google Scholar 

  35. Stein T (2005) Bacillus subtilis antibiotics: structures, syntheses, and and specific functions. Mol Microbiol 56:845–857

    Article  CAS  Google Scholar 

  36. Steinberg PD, de Nys R, Kjelleberg S (2001) Chemical mediation of surface colonization. In: McClintock JB, Baker BJ (eds) Marine chemical ecology. CRC, Florida, pp 355–387

    Google Scholar 

  37. Thompson JD, Higgings DG, Gibson TJ (1994) ClustalW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  Google Scholar 

  38. Vanden Berghe DA, Vlietinck AJ (1991) Screening methods for antibacterial and antiviral agents from higher plants. In: Hostettmann K (ed) Methods in plant biochemistry. Academic, San Diego, pp 47–68

    Google Scholar 

  39. Vollenbroich D, Pauli G, Ozel M, Vater J (1997) Antimycoplasma properties and application in cell culture of surfactin, a lipopeptide antibiotic from Bacillus subtilis. Appl Environ Microbiol 63:44–49

    CAS  Google Scholar 

  40. Winker S, Woese CR (1991) A definition of the domain Archaea, Bacteria and Eucarya in terms of small subunit ribosomal RNA characteristics. Syst Appl Microbiol 13:161–165

    Google Scholar 

  41. Yan L, Boyd KG, Burgess JG (2002) Surface attachment induced production of antimicrobial compounds by marine epiphytic bacteria using modified roller bottle cultivation. Mar Biotechnol 4:356–366

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the international Foundation for Science, Stockholm, Sweden, and the Organisation for the Prohibition of Chemical Weapons, The Hague, The Netherlands, through a grant F/3617-1 to B.O.O.M. T.S is grateful for unrestricted access to MALDI-TOF MS equipement at the Institut für Molekulare Biowissenschaften, Universität Frankfurt am Main, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamín Otto Ortega-Morales.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ortega-Morales, B.O., Chan-Bacab, M.J., Miranda-Tello, E. et al. Antifouling activity of sessile bacilli derived from marine surfaces. J Ind Microbiol Biotechnol 35, 9–15 (2008). https://doi.org/10.1007/s10295-007-0260-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-007-0260-2

Keywords

Navigation