Skip to main content
Log in

Bactericidal silver ion delivery into hydrophobic coatings with surfactants

  • Short Communication
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

A much studied oil-soluble surfactant, bis[2-ethylhexyl]sulfosuccinate, sodium salt, was ion exchanged into the silver ion form and dissolved into microemulsions of immiscible polyurethane step monomers. Coating and curing of these microemulsions produced polyurethane coatings that exhibit bactericidal activity against representative Gram negative bacteria. After 24 h exposure, 0.006–0.012% weight Ag relative to coating weight (0.0013–0.0025 μmol Ag/cm2) results in the three-log reduction in Escherichia coli. A slightly higher level of 0.031% weight Ag relative to coating weight (0.006 μmol Ag/cm2) killed all of the E. coli after 12 h exposure. Similar results were obtained for Pseudomonas aeruginosa. Since the double-tail surfactant anion promotes reverse micelle formation in many different kinds of oils and solvents, it appears an excellent vector for incorporating low and effective amounts of silver ion into many industrial, hospital, and household coating formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Anonymous (2006) Colloidal silver combined with Xtreme Scents® scent eliminator spray, http://www.arcoutdoors.com/news/PR_X-Scent_silver_XP_040930.html, downloaded January 15, 2006

  2. Bragg PD, Raimie DJ (1974) The effect of silver ions on the respiratory chain of E. coli. Can J Microbiol 20:883–889

    Article  CAS  Google Scholar 

  3. Copello GJ, Teves S, Degrossi J, D’Aquino M, Desimone MF, Diaz LE (2006) Antimicrobial activity on glass materials subject to disinfectant xerogel coating. J Ind Microbiol Biotechnol 33: 343–348 doi:10.1007/s10295–005–0066-z

    Article  CAS  Google Scholar 

  4. Cowan MM, Abshire KZ, Houk SL, Evans SM (2003) Antimicrobial efficacy of a silver-zeolite matrix coating on stainless steel. J Ind Microbiol Biotechnol 30:102–106. doi:10.1007/s10295–002–0022-0

    CAS  Google Scholar 

  5. Feng QL, Cui FZ, Kim TN, Kim JW (1999) Ag-substituted hydroxyapatite coatings with both antimircrobial effects and biocompatibility. J Mater Sci Lett 18:559–561. doi:10.1023/A:1006686713882

    Article  CAS  Google Scholar 

  6. Dibrov P, Dzioba J, Gosink KK, Hase C (2002) Chemiosmotic mechanism of antimicrobial activity of AgC in Vibrio cholerae. Antimicrob Agents Chemother 46:2668–2670. doi:10.1128/AAC.46.8.2668–2670.2002

    Article  CAS  Google Scholar 

  7. Drago GK, Simmons RB, Price DL, Crow SA, Ahearn DG (2002) Effects of anti-odor automobile air-conditioning system products on adherence of Serratia marcescens to aluminum. J Ind Microbiol Biotechnol 8: 83– 90. doi:10.1038/sj.jim.7000290

    Google Scholar 

  8. Dunn K, Edwards-Jones V (2004) The role of Acticoat™ with nanocrystalline silver in the management of burns. Burns 30(Suppl 1):S1–S9

    Article  Google Scholar 

  9. Feng QL, Wu J, Chen GQ, Kim TM, Kim JO (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52:662–668

    Article  CAS  Google Scholar 

  10. Flemming CA, Ferris FG, Beveridge TJ, Bailey GW (1990) Remobilization of toxic heavy metals absorbed to wall-clay composites. Appl Environ Microbiol 56:3191–3203

    CAS  Google Scholar 

  11. Galeano B, Korff E, Nicholson WL (2003) Inactivation of vegetative cells, but not spores, of Bacillus anthracis, B. cereus, and B. subtilis on stainless steel surfaces coated with an antimicrobial silver- and zinc-containing zeolite formulation. Appl Environ Microbiol 69:4329–4331. doi:10.1128/AEM.69.7.4329–4331.2003

    Article  CAS  Google Scholar 

  12. Guggenbichler JP (2005) Silver as antimicrobial substance in biomaterials. Int J Antimicrobial Agents 26(Suppl 1):S19

    Google Scholar 

  13. Han DW, Lee MS, Lee MH, Uzawa M, Park JC (2005) The use of silver-coated ceramic beads for sterilization of Sphingomonas sp. In drinking mineral water. World J Microbiol Biotech 21:921–924. doi:10.1007/s11274-004-6721-0

    Article  CAS  Google Scholar 

  14. Hayashi M., Miyoshi T, Sato M, Unemoto T (1992) Properties of respiratory chain-linked Na(C)-independent NADH-quinone reductase in a marine Vibrio alginolyticus. Biochim Biophys Acta 1099:145–151

    Article  CAS  Google Scholar 

  15. Hoar TP, Schulman JH (1943) Transparent water-in-oil dispersions: the oleopathic hydro-micelle. Nature 152:102–103

    CAS  Google Scholar 

  16. Hostynek JJ, Hinz RS, Lorence CR, Price M, Guy RH (1993) Metals and the skin. Crit Rev Toxicol 23:171–235

    CAS  Google Scholar 

  17. Im K, Takasaki Y, Endo A, Kuriyama M (1996) Antibacterial activity of A-type zeolite supporting silver ions in deionized distilled water. J Antibac Antifung Agents 24:269–274

    CAS  Google Scholar 

  18. Israelachvili J (1985) Intermolecular and surface forces. Academic, New York

    Google Scholar 

  19. Keleher J, Bashant J, Heldt N, Johnson L, Li Y (2002) Photo-catalytic preparation of silver-coated TiO2 particles for antibacterial applications. World J Microbiol Biotech 18:133–139. doi:10.1007/BF01870559

    Article  CAS  Google Scholar 

  20. Lia Y, Leungb P, Yaoa L, Songa QW, Newton E (2006) Antimicrobial effect of surgical masks coated with nanoparticles. J Hosp Infect 62:58–63. doi:10.1016/j.jhin.2005.04.015

    Article  Google Scholar 

  21. Liau SY, Read DC, Pugh WJ, Furr JR, Russell AD (1997) Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterial action of silver ions. Lett Appl Microbiol 25:279–283

    Article  CAS  Google Scholar 

  22. Matsumura Y, Yoshikata K, Kunisaki SL, Tsuchido T (2003) Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Appl Envir Microbiol 69:4278–4281. doi:10.1128/AEM.69.7.4278–4281.2003

    Article  CAS  Google Scholar 

  23. Mitchell P (1966) Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol Rev 41:445–502

    Article  CAS  Google Scholar 

  24. Petit C, Lixon P, Pileni MP (1993) In situ synthesis of silver nanocluster in AOT reverse micelles. J Phys Chem 97:12974–12983. doi:10.1021/j100151a054

    Article  CAS  Google Scholar 

  25. Russell AD, Hugo WB (1994) Antimicrobial activity and action of silver. Progr Med Chem 31:351–370

    Article  CAS  Google Scholar 

  26. Schulman JH, Cockbain EG (1940) Molecular interactions at oil–water interfaces. II. Phase inversion and stability of water-in-oil emulsions. Trans Faraday Soc 36:661–668

    Article  CAS  Google Scholar 

  27. Semeykina AL, Skulachev VP (1990). Submicromolar Ag+ increases passive Na+ permeability and inhibits the respiration-supported formation of Na+ gradient in Bacillus FTU vesicles. FEBS Lett 269:69–72

    Article  CAS  Google Scholar 

  28. Snodgrass PJ, Vallee BI, Hoch FL (1960) Effects of silver and mercurials on yeast alcohol dehydrogenase. J Biol Chem 235:504–508

    CAS  Google Scholar 

  29. Texter J, Ziemer P (2004) Polyurethanes via microemulsion polymerization. Macromolecules 37:5841–5843 doi:10.1021/ma049392a; (2005) Correction. Macromolecules 37:7424; doi:10.1021/ma048344n

    Google Scholar 

  30. Yan F, Texter J (2006) Capturing nanoscopic length scales and structures by polymerization in microemulsions. Soft Matter 2:109–118. doi:10.1039/b513914g

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The AgAOT sample was kindly prepared by Liehui Ge. This work was supported in part by a Spring/Summer Research Award to JT from Eastern Michigan University and by Army Contract No. DAAE07-03-Q from the US Army Tank and Armaments Command.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Texter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Texter, J., Ziemer, P., Rhoades, S. et al. Bactericidal silver ion delivery into hydrophobic coatings with surfactants. J Ind Microbiol Biotechnol 34, 571–575 (2007). https://doi.org/10.1007/s10295-007-0228-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-007-0228-2

Keywords

Navigation