Skip to main content
Log in

Novel organization of catechol meta pathway genes in the nitrobenzene degrader Comamonas sp. JS765 and its evolutionary implication

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

The catechol meta cleavage pathway is one of the central metabolic pathways for the degradation of aromatic compounds. A novel organization of the pathway genes, different from that of classical soil microorganisms, has been observed in Sphingomonas sp HV3 and Pseudomonas sp. DJ77. In a Comamonas sp. JS765, cdoE encoding catechol 2,3-dioxygenase shares a common ancestry only with tdnC of a Pseudomonas putida strain, while codG encoding 2-hydroxymuconic semialdehyde dehydrogenase shows a higher degree of similarity to those genes in classical bacteria. Located between cdoE and cdoG are several putative genes, whose functions are unknown. These genes are not found in meta pathway operons of other microorganisms with the exception of cdoX2, which is similar to cmpX in strain HV3. Therefore, the gene cluster in JS765 reveals a third type of gene organization of the meta pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig 3
Fig. 4

Similar content being viewed by others

Abbreviations

C23O:

Catechol 2,3-dioxygenase

HMSD-2:

Hydroxymuconic semialdehyde dehydrogenase

HMSH-2:

Hydroxymuconic semialdehyde hydrolase

References

  1. Abriola DP, Fields R, Stein S, MacKerell AD, Pietruazko R (1987) Active site of human liver aldehyde dehydrogenase. Biochemistry 26:5679–5684

    Article  CAS  Google Scholar 

  2. Arai H, Ohishi T, Chang MY, Kudo T (2000) Arrangement and regulation of the genes for meta-pathway enzymes required for degradation of phenol in Comamonas testosteroni TA441. Microbiology 146:1707–1715

    CAS  Google Scholar 

  3. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1993) Current protoclos in molecular biology. Wiley, New York

    Google Scholar 

  4. Bosch R, Moore ERB, Garcia-Valdes E, Pieper DH (1999) NahW, a novel, inducible salicylate hydrolase involved in mineralization of naphthalene by Pseudomonas stutzeri AN10. J Bacteriol 181:2315–2322

    CAS  Google Scholar 

  5. Carrington B, Lowe A, Shaw LE, Williams PA (1994) The lower pathway operon for benzoate catabolism in biphenyl-utilizing Pseudomonas sp. strain IC and the nucleotide sequence of the bphE gene for catechol 2,3-dioxygenase. Microbiology 140:499–508

    Article  CAS  Google Scholar 

  6. Eulberg D, Kourbatova EM, Golovleva LA, Schlomann M (1998) Evolutionary relationship between chlorocatechol catabolic enzymes from Rhodococcus opacus 1CP and their counterparts in proteobacteria: sequence divergence and functional convergence. J Bacteriol 180:1082–1094

    CAS  Google Scholar 

  7. Grimm AC, Harwood CS (1999) NahY, a catabolic plasmid-encoded receptor required for chemotaxix of Pseudomonas putida to the aromatic hydrocarbon naphthalene. J Bacteriol 181:3310–3316

    CAS  Google Scholar 

  8. He Z, Davis JK, Spain JC (1998) Purification, characterization, and sequence analysis of 2-aminomuconic 6-semialdehyde dehydrogenase from Pseudomonas pseudoalcaligenes JS45. J Bacteriol 180:4591–4595

    CAS  Google Scholar 

  9. He Z, Spain JC (1999) Comparison of the downstream pathways for degradation of nitrobenzene by Pseudomonas pseudoalcaligenes JS45 (2-aminophenol pathway) and by Comamonas sp. JS765 (catechol pathway). Arch Microbiol 171:309–316

    Article  CAS  Google Scholar 

  10. He Z, Spain JC (1999) Preparation of 2-aminomuconate from 2-aminophenol by coupled enzymatic dioxygenation and dehydrogenation reactions. J Ind Microbiol Biotechnol 23:138–142

    Article  CAS  Google Scholar 

  11. He Z, Spain JC (2000) Reactions involved in the lower pathway for degradation of 4-nitrotoluene by Mycobacterium strain HL 4-NT-1. Appl Environ Microbiol 66:3010–3015

    Article  CAS  Google Scholar 

  12. He Z, Spain JC (1997) Studies of the catabolic pathway of degradation of nitrobenzene by Pseudomonas pseudoalcaligenes JS45: removal of the amino group from 2-aminomuconic semialdehyde. Appl Environ Microbiol 63:4839–4843

    CAS  Google Scholar 

  13. Hempel J, Nicholas H, Lindahl R (1993) Aldehyde dehydrogenases: widespread structural and functional diversity within a shared framework. Protein Sci 2:1890–1900

    Article  CAS  Google Scholar 

  14. Horn JM, Harayama S, Timmis KN (1991) DNA sequence determination of the TOL plasmid (pWW0) xylGFJ genes of Pseudomonas putida: implications for the evolution of aromatic catabolism. Mol Microbiol 5:2459–2474

    Article  CAS  Google Scholar 

  15. Kim E, Aversano PJ, Romine MF, Schneider RP, Zylstra GJ (1996) Homology between genes from aromatic hydrocarbon degrdation insurface and deep subsurface Sphingomonas strains. Appl Environ Microbiol 62:1467–1470

    CAS  Google Scholar 

  16. Kim S, Shin H-J, Kim Y, Kim SJ, Kim Y-C (1997) Nucleotide sequence of the Pseudomonas sp DJ77 phnG gene encoding 2-hydroxymuconic semialdehyde dehydrogenase. Biochem Biophys Res Commun 240:41–45

    Article  CAS  Google Scholar 

  17. Kukor JJ, Olsen RH (1991) Genetic organization and regulation of a meta cleavage pathway for catechols produced from catabolism of toluene, benzene, phenol, and cresols by Pseudomonas pickettii PKO1. J Bacteriol 173:4587–4594

    CAS  Google Scholar 

  18. Lessner DL, Parales RE, Narayan S, Gibson GT (2003) Expression of the nitroarene dioxygenase genes in Comamonas JS765 and Acidovorax sp. strain JS42 is induced by multiple aromatic compounds. J Bacteriol 185:3895–3904

    Article  CAS  Google Scholar 

  19. Mars AE, Kingma J, Kaschabek SR, Reineke W, Janssen DB (1999) Conversion of 3-chlorocatechol by various catechol 2,3-dioxygenases and sequence analysis of the chlorocatechol dioxygenase region of Pseudomonas putida GJ31. J Bacteriol 181:1309–1318

    CAS  Google Scholar 

  20. McFall SM, Parsek MR, Chakrabarty AM (1997) 2-Chloromuconate and ClcR-mediate activation of the clcABD operon: in vitro transcriptional and DNase I footprint analyses. J Bacteriol 179:3655–3663

    CAS  Google Scholar 

  21. Nishino SF, Spain JC (1995) Oxidative pathway for the biodegradation of nitrobenzene by Comamonas sp. strain JS765. Appl Environ Microbiol 61:2308–2313

    CAS  Google Scholar 

  22. Nordlund I, Shingler V (1990) Nucleotide sequence of the meta-cleavage pathway enzymes 2-hydroxymuconic semialdehyde dehydrogenase and 2-hydroxymuconic semialdehyde hydrolase from Pseudomonas CF600. Biochim Biophys Acta 1049:227–230

    CAS  Google Scholar 

  23. Parales RE, Ontl TA, Gibson DT (1997) Cloning and sequence analysis of a catechol 2,3-dioxygenase gene from the nitrobenzene-degrading strain Comamonas sp. JS765. J Ind Microbiol Biotechnol 19:385–391

    Article  CAS  Google Scholar 

  24. Pridmore RD (1987) New and versatile cloning vectors with kanamycine-resistance marker. Gene 56:309–312

    Article  CAS  Google Scholar 

  25. Romine MF, Stillwell LC, Wong K-K, Thurston SJ, Sisk EC, Sensen C, Gaasterland T, Fredrickson JK, Saffer JD (1999) Complete sequence of a 184-kilobase catabolic plasmid from Sphingomonas aromaticivorans F199. J Bacteriol 181:1585–1602

    CAS  Google Scholar 

  26. Tsirogianni E, Aivaliotis M, Karas M, Tsiotis G, (2005) Detection and characterization of catechol 2,3-dioxygenase in an indigenous soil Pseudomonad by MALDI-TOF MS using a column separation. Biodegrdation 16:181–186

    Article  CAS  Google Scholar 

  27. Wierenga RK, Terpstra P, Hol WG (1986) Prediction of the occurrence of the ADP-binding beta-fold in proteins, using an amino acid sequence fingerprint. J Mol Biol 187:101–107

    Article  CAS  Google Scholar 

  28. Williams PA, Sayers JR (1994) The evolution of pathways for aromatic hydrocarbon oxidation in Pseudomonas. Biodegradation 5:195–217

    Article  CAS  Google Scholar 

  29. Yrjala K, Paulin L, Romantschuk M (1997) Novel organization of catechol meta pathway genes in Sphingomonas sp. HV3 pSKY4 plasmid. FEMS Microbiol Lett 154:403–408

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Z. He thank Heather Wright for her assistance in figure preparation. Trade or manufacturers’ names mentioned in the paper are for information only and do not constitute endorsement, recommendation, or exclusion by the USDA-ARS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongqi He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, Z., Parales, R.E., Spain, J.C. et al. Novel organization of catechol meta pathway genes in the nitrobenzene degrader Comamonas sp. JS765 and its evolutionary implication. J Ind Microbiol Biotechnol 34, 99–104 (2007). https://doi.org/10.1007/s10295-006-0170-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-006-0170-8

Keywords

Navigation