Skip to main content
Log in

Dissolved oxygen as principal parameter for conidia production of biocontrol fungi Trichoderma viride in non-Newtonian wastewater

  • Original Paper
  • Published:
Journal of Industrial Microbiology and Biotechnology

Abstract

Dissolved oxygen (DO) concentration was selected as a principal parameter for translating results of shake flask fermentation of Trichoderma viride (biocontrol fungi) to a fermenter scale. All fermentations were carried out in a 7.5 l automated fermenter with a working volume of 4 l. Fermentation performance parameters such as volumetric oxygen transfer coefficient (k L a), oxygen uptake rate (OUR), rheology, conidia concentration, glucose consumption, soluble chemical oxygen demand, entomotoxicity and inhibition index were measured. The conidia concentration, entomotoxicity and inhibition index were either stable or improved at lower DO concentration (30%). Variation of OUR aided in assessing the oxygen supply capacity of the fermenter and biomass growth. Meanwhile, rheological profiles demonstrated the variability of wastewater during fermentation due to mycelial growth and conidiation. In order to estimate power consumption, the agitation and the aeration requirements were quantified in terms of area under the curves, agitation vs. time (rpm h), and aeration vs. time (lpm h). This simple and novel strategy of fermenter operation proved to be highly successful which can be adopted to other biocontrol fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

τ :

shear stress (mPa)

τ 0 :

yield stress (shear stress at 0 rpm of spindle, mPa)

γ :

shear rate (s−1)

K :

consistency index (mPa sn)

n :

flow behaviour index (dimensionless)

μ P :

plastic viscosity (mPa s)

References

  1. Aiba S, Humphrey AE, Millis NF (1973) Aeration and agitation. In: Biochemical engineering. 2nd edn. Academic, New York

  2. APHA-AWWA-WPCF (1998) In: Clesceri LS, Greenberg AE, Eaton AD (eds) Standard methods for examination of water and wastewaters, 20th edn. American Public Health Association, Washington, DC

  3. Bailey JE, Ollis DF (1986) Biochemical engineering fundamentals, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  4. Beegle CC (1990) Bioassay methods for quantification of Bacillus thuringiensis δ-endotoxin: analytical chemistry of bacillus thuringiensis. In: Hickle LA, Fitch WL (eds) Analytical chemistry of Bacillus thuringiensis, American Chemical Society, pp 14–21

  5. Bhargava S, Nandakumar MP, Roy A, Wenger KS, Marten MR (2003) Pulsed feeding during fed-batch fungal fermentation leads to reduced viscosity without detrimentally affecting protein expression. Biotechnol Bioeng 81(3):341–347. DOI: 10.1002/bit.10481

    Google Scholar 

  6. Brar SK, Verma M, Tyagi RD, Valéro JR, Surampalli RY (2005). Starch industry wastewater-based stable Bacillus thuringiensis liquid formulations. J Econ Entomol 98(6):1890-1898

    Article  CAS  Google Scholar 

  7. Butt TM (2000) Fungal biological control agents. In: Pesticide. Outlook, October 2000. The Royal Society of Chemistry, pp 186–191

  8. Campos L, Felix CR (1995) Purification and characterization of a glucoamylase from Humicola grisea. Appl Environ Microbiol 61(1):2436–2438

    CAS  Google Scholar 

  9. Chet I (1987) Trichoderma—Applications, mode of action and potential as a biocontrol agent of soilborne plant pathogenic fungi. In: Chet I (ed) Innovative approaches to plant disease control. Wiley, New York, pp 137–160

    Google Scholar 

  10. Cooney JM, Lauren DR (1998) Trichoderma/pathogen interactions: measurement of antagonistic chemicals produced at the antagonist/pathogen interface during tubular bioassay. Lett Appl Microbiol 27:283–286

    Article  CAS  Google Scholar 

  11. Dinham B (2005) Agrochemical markets soar—pest pressures or corporate design? Pestic News 68:9–11

    Google Scholar 

  12. Felse PA, Panda T (1999) Self-directing optimization of parameters for extracellular chitinase production by Trichoderma harzianum in batch mode. Process Biochem 34:563–566

    Article  CAS  Google Scholar 

  13. Harmann GE, Björjmann T (1998) Potential and existing uses of Trichoderma and Gliocladium for plant disease control and plant growth enhancement. In: Harmann GE, Kubicek CK (eds) Trichoderma and Gliocladium vol 2., Taylor and Francis Ltd., London, pp 229–265

  14. Humphrey A (1998) Shake flask to fermentor: what have we learned? Biotechnol Prog 14:3–7

    Article  CAS  Google Scholar 

  15. Jenkins NE, Heviefo G, Langewald J, Cherry AJ, Lomer CJ (1998) Development of mass production technology for aerial conidia for use as mycopesticides. Biocontrol News Inform 19(1):1N–31N

    Google Scholar 

  16. Kanauchi M, Bamforth CW (2001) Growth of Trichoderma viride on crude cell wall preparations from barley. J Agric Food Chem 49:883–887

    Article  CAS  Google Scholar 

  17. Kunitz M (1947) Crystalline soybean trypsin inhibitor. J Gen Physiol 30:291–310

    Article  CAS  Google Scholar 

  18. Lewis JA, Papavizas GC (1983) Production of chlamydospores and conidia by Trichoderma spp. in liquid and solid growth media. Soil Biol Biochem 15(3):351–357

    Article  Google Scholar 

  19. Lejeune R, Baron GV (1995) Effect of agitation on growth and enzyme production of Trichoderma reesei in batch fermentation. Appl Microbiol Biotechnol 43:249–58

    Article  CAS  Google Scholar 

  20. McIntyre M, Breum J, Arnau J, Nielsen J (2002) Growth physiology and dimorphism of Mucor circinelloides (syn. racemosus) during submerged batch cultivation. Appl Microbiol Biotechnol 58:495–502

    Article  CAS  Google Scholar 

  21. MENV (2004) Guide sur la valorisation des matières résiduelles fertilisantes: Critères de références et normes réglementaires. Direction du milieu rural, environnement Québec, Canada, p 138

  22. Michell BJ, Miller SA (1962) Power requirements of gas–liquid agitated systems. AIChEJ. 8:262–266

    Article  Google Scholar 

  23. Miller GL (1959) Use of dinitrosalycylic acid reagent for determination of reducing sugars. Anal Chem 32:426–428

    Article  Google Scholar 

  24. Mischke S (1997) A quantitative bioassay for extracellular metabolites that antagonize growth of filamentous fungi, and its use with biocontrol fungi. Mycopathologia 137:45–52

    Article  CAS  Google Scholar 

  25. Olsvik ES, Kristiansen B (1992) Influence of oxygen tension, biomass concentration, and specific growth rate on the rheological properties of a filamentous fermentation broth. Biotechnol Bioeng 40:1293–1299

    Article  CAS  Google Scholar 

  26. Papagianni M (2004) Fungal morphology and metabolite production in submerged mycelial processes. Biotechnol Adv 22:189–259. DOI:10.1016/j.biotechadv.2003.09.005

    Google Scholar 

  27. Perry RH, Green DW (1997) Perry’s chemical engineers’ handbook, 7th edn. McGraw-Hill, New York

    Google Scholar 

  28. Pickett JA, Butt TM, Doughty KJ, Wallsgrove RM, Williams IH (1995) Minimising pesticide input in oilseed rape by exploiting natural regulatory processes. Plenary lecture. In: Proceedings of the GCIRC 9th International Rapeseed Congress, Cambridge, 4–7 July 1995, 2:565–571

  29. Punja ZK, Utkhede RS (2003) Using fungi and yeasts to manage vegetable crop diseases. Trends Biotechnol 21(9):400–407. DOI 10.1016/S0167-7799(03)00193-8

    Google Scholar 

  30. Rushton JH, Costich EW, Everett HJ (1950) Power characteristics of mixing impellers. Chem Eng Progr 46:395–404

    CAS  Google Scholar 

  31. Verma M, Brar SK, Tyagi RD, Valéro JR, Surampalli RY (2005) Wastewater sludge as a potential raw material for antagonistic fungus (Trichoderma sp.): role of pre-treatment and solids concentration. Water Res 39(15): 3587–3596. DOI 10.1016/j.watres.2005.07.001

    Google Scholar 

  32. Wang SL, Yen YH, Tsiao WJ, Chang WT, Wang CL (2002) Production of antimicrobial compounds by Monascus purpureus CCRC31499 using shrimp and crab shell powder as a carbon source. Enzyme Microb Technol 31:337–344

    Article  Google Scholar 

  33. Weber J, Agblevor FA (2005) Microbubble fermentation of Trichoderma reesei for cellulase production. Process Biochem 40:669–676. DOI 10.1016/j.procbio.2004.01.047

    Google Scholar 

  34. Zaldívar M, Velásquez JC, Contreras I, Pérez LM (2001) Trichoderma aureoviride 7–121, a mutant with enhanced production of lytic enzymes: its potential use in waste cellulose degradation and/or biocontrol. Electron J Biotechnol 4(3):160–168

    Google Scholar 

  35. Zheng Z, Shetty K (1998) Cranberry processing waste for solid state fungal inoculant production. Process Biochem 33(3):323–329

    Article  CAS  Google Scholar 

  36. Zlokarnik M (1998) Problems in the application of dimensional analysis and scale-up of mixing operations. Chem Eng Sci 53(17):3023–3030

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are sincerely thankful to Natural Sciences and Engineering Research Council of Canada (Grants A4984, STP235071, Canada Research Chair) for financial support. The views and opinions expressed in this article are those of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. D. Tyagi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verma, M., Brar, S.K., Tyagi, R.D. et al. Dissolved oxygen as principal parameter for conidia production of biocontrol fungi Trichoderma viride in non-Newtonian wastewater. J Ind Microbiol Biotechnol 33, 941–952 (2006). https://doi.org/10.1007/s10295-006-0164-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-006-0164-6

Keywords

Navigation