Skip to main content
Log in

Accumulation of organic acids in cultivations of Neisseria meningitidis C

  • Original Paper
  • Published:
Journal of Industrial Microbiology and Biotechnology

Abstract

Aiming at the industrial production of serogroup C meningococcal vaccine, different experimental protocols were tested to cultivate Neisseria meningitidis C and to investigate the related organic acid release. Correlations were established between specific rates of acetic acid and lactic acid accumulation and specific growth rate, during cultivations carried out on the Frantz medium in a 13 l bioreactor at 35°C, 0.5 atm, 400 rpm and air flowrate of 2 l min−1. A first set of nine batch runs was carried out: (1) with control of dissolved oxygen (O2) at 10% of its saturation point, (2) with control of pH at 6.5, and (3) without any control, respectively. Additional fed-batch or partial fed-batch cultivations were performed without dissolved O2 control, varying glucose concentration from 1.0 to 3.0 g l−1, nine of which without pH control and other two with pH control at 6.5. No significant organic acid level was detected with dissolved O2 control, whereas acetic acid formation appeared to depend on biomass growth either in the absence of any pH and dissolved O2 control or when the pH was kept at 6.5. Under these last conditions, lactic acid was released as well, but it did not seem to be associated to biomass growth. A survey of possible metabolic causes of this behavior suggested that N. meningitidis may employ different metabolic pathways for the carbon source uptake depending on the cultivation conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Aymé G, Donikian R, Mynard MC, Lagrandeur G (1973) Production and controls of serogroup A Neisseria meningitidis polysaccharide vaccine. In: Cvjetanovic B (ed) Table ronde sur l’immunoprophilaxie de la meningite cérebro-spinale. Edition Fondation Mérieux, Lyon, pp 4–30

    Google Scholar 

  2. Baruque-Ramos J, Hiss H, Vicentin MA, Paz MF, Peixoto A, Leal MBB, Gonçalves PC, Raw I (1996) Batch cultivation kinetics of Neisseria meningitidis (serogroup C) in Frantz medium I. Growth and polysaccharide production. Arch Biol Technol 39:215–220

    Google Scholar 

  3. Baruque-Ramos J, Hiss H, Vicentin MA, Paz MF, Peixoto A, Leal MBB, Sato RA, Vassoler U, Raw I (2001) Nitrogen consumption during batch cultivation of Neisseria meningitidis (serogroup C) in Frantz medium. Braz J Microbiol 32:305–310

    Article  CAS  Google Scholar 

  4. Baruque-Ramos J, Hiss H, Arauz LJ, Mota RL, Ricci-Silva ME, Paz MF, Tanizaki MM, Raw I (2005) Polysaccharide production of Neisseria meningitidis (Serogroup C) in batch and fed-batch cultivations. Biochem Eng J 23:231–240

    Article  CAS  Google Scholar 

  5. Blacklow RS, Warren L (1962) Biosynthesis of sialic acids by Neisseria meningitidis. J Biol Chem 237:3520–3526

    CAS  Google Scholar 

  6. Carty CE, Rodrigues E, Ittensohn OL, Hagopian A, Dunn N, McAleer WJ, Hurni W, Kniskern PJ, Maigetter RZ (1984) Fermentation studies of Neisseria meningitidis serogroups A, C, W135 and Y. Dev Ind Microbiol 25:695–700

    CAS  Google Scholar 

  7. Champe PC, Harvey RA (1994) Glycolysis. In: Winters R, Schott J, Caputo GR (eds) Lippincott’s illustrated reviews: biochemistry, 2nd edn. Lippincott-Raven, Philadelphia, pp 88

    Google Scholar 

  8. Champe PC, Harvey RA (1994) Glycosaminoglycans. In: Winters R, Schott J, Caputo GR (eds) Lippincott’s illustrated reviews: biochemistry, 2nd edn. Lippincott-Raven, Philadelphia, pp 150–152

    Google Scholar 

  9. Exley RM, Goodwin L, Mowe E, Shaw J, Smith H, Read RC, Tang CM (2005) Neisseria meningitidis lactate permease is required for nasopharyngeal colonization. Infect Immun 73:5762–5766

    Article  CAS  Google Scholar 

  10. Exley RM, Shaw J, Mowe E, Sun YH, West NP, Williamson M, Botto M, Smith H, Tang CM (2005) Available carbon source influences the resistance of Neisseria meningitidis against complement. J Exp Med 201:1637–1645

    Article  CAS  Google Scholar 

  11. Frantz ID Jr (1942) Growth requirements of the meningococcus. J Bacteriol 43:757–761

    CAS  Google Scholar 

  12. Frasch CE (1990) Production and control of Neisseria meningitidis vaccines. In: Mizrahi A (ed) Advances in biotechnological processes: bacterial vaccines, vol 13. Wiley, New York, pp 123–145

  13. Fu J, Baley J, King JJ, Parker CB, Robinett RSR, Kolodin DG, George HA, Herber WK (1995) Recent advances in the large scale fermentation of Neisseria meningitidis group B for the production of an outer membrane protein complex. Biotechnology 13:170–174

    Article  CAS  Google Scholar 

  14. Gotschlich EC, Liu TY, Artenstein MD (1969) Human immunity to the meningococcus—III. Preparation and immunochemical properties of the group A, group B and group C meningococcal polysaccharides. J Exp Med 129:1349–1365

    Article  CAS  Google Scholar 

  15. Gotschlich EC, Fraser BA, Nishimura O, Robbins JB, Liu TY (1981) Lipid on capsular polysaccharides of gram-negative bacteria. J Biol Chem 256:8915–8921

    CAS  Google Scholar 

  16. Greaves RIN (1960) Preservation of living cells by freeze-drying. Ann N Y Acad Sci 85:723

    Article  CAS  Google Scholar 

  17. Holten E (1974) Glucokinase and glucose 6-phosphate dehydrogenase in Neisseria. Acta Pathol Microbiol Scand Sect B 82:201–206

    CAS  Google Scholar 

  18. Holten E (1974) 6-Phosphogluconate dehydrogenase and enzymes of the Entner-Doudoroff pathway in Neisseria. Acta Pathol Microbiol Scand Sect B 82:207–213

    CAS  Google Scholar 

  19. Jyssum K (1960) Intermediate reactions of the tricarboxylic acid cycle in meningococci. Acta Pathol Microbiol Scand Sect B 48:121–132

    CAS  Google Scholar 

  20. Kahaner D, Moler C, Nash S (1989) Numerical methods and software: computer methods for mathematical computations. Prentice Hall, Englewood Cliffs

    Google Scholar 

  21. Leighton MP, Kelly DJ, Williamson MP, Shaw JG (2001) An NMR and enzyme study of the carbon metabolism of Neisseria meningitidis. Microbiology 147:1473–1482

    CAS  Google Scholar 

  22. Luedeking R, Piret EL (1959) A kinetic study of the lactic acid fermentation. Batch process at controlled pH. J Biochem Microbiol Technol Eng 1:393–412

    Article  CAS  Google Scholar 

  23. Morse SA, Stein S, Hines J (1974) Glucose metabolism in Neisseria gonorrhoeae. J Bacteriol 120:702–714

    CAS  Google Scholar 

  24. Morse SA, Hebeler BH (1978) Effect of pH on the growth and glucose metabolism of Neisseria gonorrhoeae. Infect Immun 21:87–95

    CAS  Google Scholar 

  25. Müller H, Hinton JA (1941) A protein-free medium for primary isolation of the gonococcus and meningococcus. Proc Soc Exp Biol Med 48:330

    Google Scholar 

  26. Pagliarulo C, Salvatore P, De Vitis LR, Colicchio R, Monaco C, Tredici M, Talà A, Bardaro M, Lavitola A, Bruni CB, Alifano P (2004) Regulation and differential of gdhA encoding NADP-specific glutamate dehydrogenase in Neisseria meningitidis clinical isolates. Mol Microbiol 51:1757–1772

    Article  CAS  Google Scholar 

  27. Paz MF, Baruque-Ramos J, Hiss H, Leal MBB, Vicentin MA, Raw I (2003) Polysaccharide production in batch process of Neisseria meningitidis serogroup C comparing Frantz, modified Frantz and Catlin 6 media. Braz J Microbiol 34:27–32

    Article  Google Scholar 

  28. Pharmacia Biotech (1997) Gel filtration: principle and methods, 6th edn. Edition Pharmacia, Uppsala

  29. Plotkin SAS, Mortimer EA Jr (1998) Meningoccocal vaccines. In: Vaccines. W.B. Saunders Company, Philadelphia, pp 263–270

    Google Scholar 

  30. Smith H (2000) Host factors that influence the behaviour of bacterial pathogens in vivo. Int J Med Microbiol 290:207–213

    CAS  Google Scholar 

  31. Smith H, Yates EA, Cole JA, Parsons NJ (2001) Lactate stimulation of gonococcal metabolism in media containing glucose: mechanism, impact on pathogenicity, and wider implications for other pathogens. Infect Immun 69:6565–6572

    Article  CAS  Google Scholar 

  32. Spiro RG (1966) Analysis of sugar found in glycoproteins. In: Methods in Enzymology, vol 8. Academic Press, New York, pp 3–13

  33. Svennerholm L (1957) Quantitative estimation of sialic acids. II. A colorimetric resorcinol-hydrochloric acid method. Biochim Biophys Acta 24:604–611

    Article  CAS  Google Scholar 

  34. Tettelin H, Saunders NJ, Heidelberg J, Jeffries AC, Nelson KE, Eisen JA, Ketchum KA, Hood DW, Peden JF, Dodson RJ, Nelson WC, Gwinn ML, DeBoy R, Peterson JD, Hickey EK, Haft DH, Salzberg SL, White O, Fleischmann RD, Dougherty BA, Mason T, Ciecko A, Parksey DS, Blair E, Cittone H, Clark EB, Cotton MD, Utterback TR, Khouri H, Qin H, Vamathevan J, Gill J, Scarlato V, Masignani V, Pizza M, Grandi G, Sun L, Smith HO, Fraser CM, Moxon ER, Rappuoli R, Venter JC (2000) Complete genome sequence of Neisseria meningitidis serogroup B strain MC58. Science 287:1809–1815

    Article  CAS  Google Scholar 

  35. Wellmer A, Prange J, Gerber J, Zysk G, Lange P, Michel U, Eiffert H, Nau R (2001) D- and L-lactate in rabbit and human bacterial meningitis. Scand J Infect Dis 33:909–913

    Article  CAS  Google Scholar 

  36. WHO (1976) Expert committee on biological standardization, 27th Report Annex 2, Requirements for meningococcal polysaccharide vaccine. WHO Report Series 594:50–75

  37. WHO (1981) Expert committee on biological standardization, 31st Report Annex 6, Requirements for meningococcal polysaccharide vaccine. WHO Report Series 658:174–184

Download references

Acknowledgements

Financial support from FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo), PADCT and Fundação Butantan are gratefully acknowledged. The authors would also like to thank Mr. Lourivaldo Inácio de Souza, Mr. Máximo de Moraes, Mr. Hélio Fernandes Chagas, Mrs. Inês do Amaral Maurelli, Mrs. Salete Vargas and Mrs. Fátima Aparecida Mendonça de Oliveira for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Júlia Baruque-Ramos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baruque-Ramos, J., Hiss, H., Converti, A. et al. Accumulation of organic acids in cultivations of Neisseria meningitidis C . J IND MICROBIOL BIOTECHNOL 33, 869–877 (2006). https://doi.org/10.1007/s10295-006-0141-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-006-0141-0

Keywords

Navigation