Skip to main content

Advertisement

Log in

Influence of high salinity on biofilm formation and benzoate assimilation by Pseudomonas aeruginosa

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Pseudomonas species were used in bioremediation technologies. In situ conditions, such as marine salinity, could limit the degradation of hydrocarbons and aromatic compounds by the bacteria. Biofilm ability to tolerate environmental stress could be used to increase biorestoration. In this report, we used scanning confocal laser microscopy and microtiter dish assay to analyse the impact of hyperosmotic stress on biofilm formation by Pseudomonas aeruginosa. We used benzoate as the sole carbon source and the effect of the stress on its degradation was also studied. Hyperosmotic shock inhibited the biofilm development and decreased the degradation of benzoate. The osmoprotectant glycine betaine partially restored both the biofilm formation and benzoate degradation, suggesting that it could be used as a complement in bioremediation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bloemberg GV, O’Toole GA, Lugtenberg BJ, Kolter R (1997) Green fluorescent protein as a marker for Pseudomonas spp. Appl Environ Microbiol 63:4543–4551

    PubMed  CAS  Google Scholar 

  2. Bremer E, Krämer R (2000) Coping with osmotic challenges: osmoregulation through accumulation and release of compatible solutes in bacteria. Bacterial stress responses, chapter 6, pp 79–97

  3. Csonka LN (1989) Physiological and genetic responses of bacteria to osmotic stress. Microbiol Rev 53:121–147

    PubMed  CAS  Google Scholar 

  4. Davey ME, Caiazza NC, O’Toole GA (2003) Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. J Bacteriol 185:1027–1036

    Article  PubMed  CAS  Google Scholar 

  5. De Kievit TR, Gillis R, Marx S, Brown C, Iglewski H (2001) Quorum-sensing genes in Pseudomonas aeruginosa biofilms: their role and expression patterns. Appl Environ Microbiol 67:1865–1873

    Article  PubMed  Google Scholar 

  6. Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:47–64

    PubMed  CAS  Google Scholar 

  7. Harayama S, Kok M, Neidle EL (1992) Functional and evolutionary relationships among diverse oxygenases. Annu Rev Microbiol 46:565–601

    Article  PubMed  CAS  Google Scholar 

  8. Holloway BW, Krishnapillai V, Morgan AF (1979) Chromosomal genetics of Pseudomonas. Microbiol Rev 43:73–102

    PubMed  CAS  Google Scholar 

  9. Lang S, Wullbrandt D (1999) Rhamnose lipids—biosynthesis, microbial production and application potential. Appl Microbiol Biotechnol 51:22–32

    Article  PubMed  CAS  Google Scholar 

  10. Mah TC, O’Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9:34–39

    Article  PubMed  CAS  Google Scholar 

  11. Manetas Y, Petropoulou Y, Karabourniotis G (1986) Compatible solutes and their effects on phosphoenolpyruvate carboxylase of C4-halophytes. Plant Cell Environ 9:145–151

    Article  CAS  Google Scholar 

  12. Riis V, Kleinsteuber S, Babel W (2003) Influence of high salinities on the degradation of diesel fuel by bacterial consortia. Can J Microbiol 49:713–721

    Article  PubMed  CAS  Google Scholar 

  13. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  14. Schwab KB, Gaff DF (1986) Sugar and ion content in leaf of several drought tolerant plants under water stress. J Plant Physiol 125:257–265

    CAS  Google Scholar 

  15. Stanley NR, Lazazzera BA (2004) Environmental signals and regulatory pathways that influence biofilm formation. Mol Microbiol 52:917–924

    Article  PubMed  CAS  Google Scholar 

  16. Talibart R, Jebbar M, Gouesbet G, Himdi-Kabbab S, Wroblewski H, Blanco C, Bernard T (1994) Osmoadaptation in rhizobia: ectoine-induced salt tolerance. J Bacteriol 176:5210–5217

    PubMed  CAS  Google Scholar 

  17. Watnick P, Kolter R (2000) Biofilm, city of microbes. J Bacteriol 182:2675–2679

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Region Bretagne, FEDER funds, and the Ministère de la Recherche et de la Technologie (RITMER grant and doctoral fellowships to A.B. and F. D.). We thank G. A. O’Toole for the kind gift of plasmid pSMC21. We thank A. Dufour for his critically reading manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexis Bazire.

Additional information

Alexis Bazire and Farès Diab contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bazire, A., Diab, F., Jebbar, M. et al. Influence of high salinity on biofilm formation and benzoate assimilation by Pseudomonas aeruginosa . J Ind Microbiol Biotechnol 34, 5–8 (2007). https://doi.org/10.1007/s10295-006-0087-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-006-0087-2

Keywords

Navigation