Advertisement

Risk mitigation of genetically modified bacteria and plants designed for bioremediation

  • John Davison
Environmental Biotechnology

Abstract

While the possible advantages of bioremediation and phytoremediation, by both recombinant microbes and plants, have been extensively reviewed, the biosafety concerns have been less extensively treated. This article reviews the possible risks associated with the use of recombinant bacteria and plants for bioremediation, with particular emphasis on ways in which molecular genetics could contribute to risk mitigation. For example, genetic techniques exist that permit the site-specific excision of unnecessary DNA, so that only the transgenes of interest remain. Other mechanisms exist whereby the recombinant plants or bacteria contain conditional suicide genes that may be activated under certain conditions. These methods act to prevent the spread and survival of the transgenic bacteria or plants in the environment, and to prevent horizontal gene flow to wild or cultivated relatives. Ways in which these genetic technologies may be applied to risk mitigation in bioremediation and phytoremediation are discussed.

Keywords

Phytoremediation Genetically modified organisms Biosafety Horizantal gene transfer Risk-assessment 

Notes

Acknowledgement

This work was partially supported by an integrated research project (Co-Extra, Contract No 007158) from the European Community Framework 6 Programme.

References

  1. 1.
    Al Ahmad H, Galili S, Gressel J (2004) Tandem constructs to mitigate transgene persistence: tobacco as a model. Mol Ecol 13:697–710CrossRefPubMedGoogle Scholar
  2. 2.
    Amarger N (2002) Genetically modified bacteria in agriculture. Biochimie 84:1061–1072CrossRefPubMedGoogle Scholar
  3. 3.
    Bennett LE, Burkhead JL, Hale KL, Terry N, Pilon M, Pilon-Smits EA (2003) Analysis of transgenic Indian mustard plants for phytoremediation of metal-contaminated mine tailings. J Environ Qual 32:432–440PubMedGoogle Scholar
  4. 4.
    Bennett PM, Livesey CT, Nathwani D, Reeves DS, Saunders JR, Wise R (2004) An assessment of the risks associated with the use of antibiotic resistance genes in genetically modified plants: report of the Working Party of the British Society for Antimicrobial Chemotherapy. J Antimicrob Chemother 53:418–431CrossRefPubMedGoogle Scholar
  5. 5.
    Bizily SP, Rugh CL, Summers AO, Meagher RB (1999) Phytoremediation of methylmercury pollution: merB expression in Arabidopsis thaliana confers resistance to organomercurials. Proc Natl Acad Sci USA 96:6808–6813PubMedCrossRefGoogle Scholar
  6. 6.
    Bizily SP, Rugh CL, Meagher RB (2000) Phytodetoxification of hazardous organomercurials by genetically engineered plants. Nat Biotechnol 18:213–217CrossRefPubMedGoogle Scholar
  7. 7.
    Bizily SP, Kim T, Kandasamy MK, Meagher RB (2003) Subcellular targeting of methylmercury lyase enhances its specific activity for organic mercury detoxification in plants. Plant Physiol 131:463–471CrossRefPubMedGoogle Scholar
  8. 8.
    Bruinsma M, Kowalchuk G, van Veen J (2003) Effects of genetically modified plants on microbial communities and processes in the soil. Biol Fertil Soils 37:329–337Google Scholar
  9. 9.
    Clemens S, Palmgren MG, Kramer U (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci 7:309–315CrossRefPubMedGoogle Scholar
  10. 10.
    Conner AJ, Glare TR, Nap JP (2003) The release of genetically modified crops into the environment. Part II. Overview of ecological risk assessment. Plant J 33:19–46CrossRefPubMedGoogle Scholar
  11. 11.
    Daar AS, Thorsteinsdottir H, Martin DK, Smith AC, Nast S, Singer PA (2002) Top ten biotechnologies for improving health in developing countries. Nat Genet 32:229–232CrossRefPubMedGoogle Scholar
  12. 12.
    Dale PJ, Clarke B, Fontes EM (2002) Potential for the environmental impact of transgenic crops. Nat Biotechnol 20:567–574CrossRefPubMedGoogle Scholar
  13. 13.
    Daly MJ (2000) Engineering radiation-resistant bacteria for environmental biotechnology. Curr Opin Biotechnol 11:280–295PubMedCrossRefGoogle Scholar
  14. 14.
    Daniell H, Wiebe PO, Millan AF (2001) Antibiotic-free chloroplast genetic engineering—an environmentally friendly approach. Trends Plant Sci 6:237–239CrossRefPubMedGoogle Scholar
  15. 15.
    Davison J (1999) Genetic exchange between bacteria in the environment. Plasmid 42:73–91CrossRefPubMedGoogle Scholar
  16. 16.
    Davison J (2002) Genetic tools for Pseudomonads, Rhizobia and other Gram-negative bacteria. Biotechniques 32:386–401PubMedGoogle Scholar
  17. 17.
    Davison J (2002) Towards safer vectors for field release of recombinant bacteria. Environ Biosafety Res 1:9–18PubMedGoogle Scholar
  18. 18.
    Davison J (2004) Monitoring horizontal gene transfer in bacteria. Nat Biotecnol 22:1394Google Scholar
  19. 19.
    De la Fuente JM, Ramirez-Rodriguez V, Cabrera-Ponce JL, Herrera-Estrella L (1997) Aluminum tolerance in transgenic plants by alteration of citrate synthesis. Science 276:1566–1578PubMedCrossRefGoogle Scholar
  20. 20.
    De Lorenzo V (1994) Designing microbial systems for gene expression in the field. Trends Biotechnol 12:365–371PubMedCrossRefGoogle Scholar
  21. 21.
    de Vetten N, Wolters AM, Raemakers K, van der Meer I, ter Stege R, Heeres E, Heeres P, Visser R (2003) A transformation method for obtaining marker-free plants of a cross-pollinating and vegetatively propagated crop. Nat Biotechnol 21:439–442CrossRefPubMedGoogle Scholar
  22. 22.
    de Vries J, Heine M, Harms K, Wackernagel W (2003) Spread of recombinant DNA by roots and pollen of transgenic potato plants, identified by highly specific biomonitoring using natural transformation of an Acinetobacter sp. Appl Environ Microbiol 69:4455–4462PubMedCrossRefGoogle Scholar
  23. 23.
    Dhankher OP, Li Y, Rosen BP, Shi J, Salt D, Senecoff JF, Sashti NA, Meagher RB (2002) Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and gamma-glutamylcysteine synthetase expression. Nat Biotechnol 20:1140–1145CrossRefPubMedGoogle Scholar
  24. 24.
    Dorlhac de Borne F, Elmayan T, de Roton C, de Hysl L, Tepfer D (1998) Cadmium partitioning in transgenic tobacco plants expressing a mammalian metallothionein gene. Mol Breed 4:83–90CrossRefGoogle Scholar
  25. 25.
    Doty SL, Shang TQ, Wilson AM, Tangen J, Westergreen AD, Newman LA, Strand SE, Gordon MP (2000) Enhanced metabolism of halogenated hydrocarbons in transgenic plants containing mammalian cytochrome P450 2E1. Proc Natl Acad Sci USA 97:6287–6291PubMedCrossRefGoogle Scholar
  26. 26.
    Ebinuma H, Sugita K, Matsunaga E, Yamakado M (1997) Selection of marker-free transgenic plants using the isopentenyl transferase gene. Proc Natl Acad Sci USA 94:2117–2121CrossRefPubMedGoogle Scholar
  27. 27.
    Ellis DR, Salt DE (2003) Plants, selenium and human health. Curr Opin Plant Biol 6:273–279CrossRefPubMedGoogle Scholar
  28. 28.
    Ellstrand NC (2001) When transgenes wander, should we worry? Plant Physiol 125:1543–1545CrossRefPubMedGoogle Scholar
  29. 29.
    Ellstrand NC (2003) Current knowledge of gene flow in plants: implications for transgene flow. Philos Trans R Soc London Biol Sci 358:1163–1170CrossRefGoogle Scholar
  30. 30.
    Erikson O, Hertzberg M, Nasholm T (2004) A conditional marker gene allowing both positive and negative selection in plants. Nat Biotechnol 22:455–458CrossRefPubMedGoogle Scholar
  31. 31.
    Fernandes P, Ferreira BS, Cabral JM (2003) Solvent tolerance in bacteria: role of efflux pumps and cross-resistance with antibiotics. Int J Antimicrob Agents 22:211–216CrossRefPubMedGoogle Scholar
  32. 32.
    Gadd GM (2000) Bioremedial potential of microbial mechanisms of metal mobilization and immobilization. Curr Opin Biotechnol 11:271–279CrossRefPubMedGoogle Scholar
  33. 33.
    Goklany IM (2002) From precautionary principle to risk-risk analysis. Nat Biotechnol 20:1075CrossRefPubMedGoogle Scholar
  34. 34.
    Gordon M, Choe N, Duffy J, Ekuan G, Heilman P, Muiznieks I, Ruszaj M, Shurtleff BB, Strand S, Wilmoth J, Newman LA (1998) Phytoremediation of trichloroethylene with hybrid poplars. Environ Health Perspect 106[Suppl 4]:1001–1004PubMedCrossRefGoogle Scholar
  35. 35.
    Gressel J (1999) Tandem constructs: preventing the rise of superweeds. Trends Biotechnol 17:361–366CrossRefPubMedGoogle Scholar
  36. 36.
    Hannink N, Rosser SJ, French CE, Basran A, Murray JA, Nicklin S, Bruce NC (2001) Phytodetoxification of TNT by transgenic plants expressing a bacterial nitroreductase. Nat Biotechnol 19:1168–1172CrossRefPubMedGoogle Scholar
  37. 37.
    Heaton AC, Rugh CL, Kim T, Wang NJ, Meagher RB (2003) Toward detoxifying mercury-polluted aquatic sediments with rice genetically engineered for mercury resistance. Environ Toxicol Chem 22:2940–2947CrossRefPubMedGoogle Scholar
  38. 38.
    Holmes A, Govan J, Goldstein R (1998) Agricultural use of Burkholderia (Pseudomonas) cepacia: a threat to human health? Emerg Infect Dis 4:221–227PubMedCrossRefGoogle Scholar
  39. 39.
    Kaiser J (2000) USDA to commercialize “terminator” technology. Science 289:709–710CrossRefPubMedGoogle Scholar
  40. 40.
    Kleter GA, van der Krieken WM, Kok EJ, Bosch D, Jordi W, Gilissen LJ (2001) Regulation and exploitation of genetically modified crops. Nat Biotechnol 19:1105–1110CrossRefPubMedGoogle Scholar
  41. 41.
    Kramer U, Chardonnens AN (2001) The use of transgenic plants in the bioremediation of soils contaminated with trace elements. Appl Microbiol Biotechnol 55:661–672CrossRefPubMedGoogle Scholar
  42. 42.
    Kuvshinov VV, Koivu K, Kanerva A, Pehu E (2001) Molecular control of transgene escape from genetically modified plants. Plant Sci 160:517–522CrossRefPubMedGoogle Scholar
  43. 43.
    Lloyd JR, Lovley DR, Macaskie LE (2003) Biotechnological application of metal-reducing microorganisms. Adv Appl Microbiol 53:85–128PubMedGoogle Scholar
  44. 44.
    Ma LQ, Komar KM, Tu C, Zhang W, Cai Y, Kennelley ED (2001) A fern that hyperaccumulates arsenic. Nature 409:579CrossRefPubMedGoogle Scholar
  45. 45.
    Maliga P (2002) Engineering the plastid genome of higher plants. Curr Opin Plant Biol 5:164–172CrossRefPubMedGoogle Scholar
  46. 46.
    March JC, Rao G, Bentley WE (2003) Biotechnological applications of green fluorescent protein. Appl Microbiol Biotechnol 62:303–315CrossRefPubMedGoogle Scholar
  47. 47.
    Mascia PN, Flavell RB (2004) Safe and acceptable strategies for producing foreign molecules in plants. Curr Opin Plant Biol 7:189–195CrossRefPubMedGoogle Scholar
  48. 48.
    McGrath SP, Zhao FJ (2003) Phytoextraction of metals and metalloids from contaminated soils. Curr Opin Biotechnol 14:277–282CrossRefPubMedGoogle Scholar
  49. 49.
    McIntyre T (2003) Phytoremediation of heavy metals from soils. Adv Biochem Eng Biotechnol 78:97–123PubMedGoogle Scholar
  50. 50.
    Meagher RB (2000) Phytoremediation of toxic elemental and organic pollutants. Curr Opin Plant Biol 3:153–162CrossRefPubMedGoogle Scholar
  51. 51.
    Meagher RB (2001) Pink water, green plants, and pink elephants. Nat Biotechnol 19:1120–1121CrossRefPubMedGoogle Scholar
  52. 52.
    Mejare M, Bulow L (2001) Metal-binding proteins and peptides in bioremediation and phytoremediation of heavy metals. Trends Biotechnol 19:67–73CrossRefPubMedGoogle Scholar
  53. 53.
    Miller HI, Conko G (2000) The protocol’s illusionary principle. Nat Biotechnol 18:360CrossRefPubMedGoogle Scholar
  54. 54.
    Miller HI, Conko G (2001) Precaution without principle. Nat Biotechnol 19:302–303CrossRefPubMedGoogle Scholar
  55. 55.
    Montesinos E (2003) Plant-associated microorganisms: a view from the scope of microbiology. Int Microbiol 6:221–223CrossRefPubMedGoogle Scholar
  56. 56.
    Morrissey JP, Walsh UF, O’Donnell A, Moenne-Loccoz Y, O’Gara F (2002) Exploitation of genetically modified inoculants for industrial ecology applications. Antonie Van Leeuwenhoek 81:599–606CrossRefPubMedGoogle Scholar
  57. 57.
    Nap JP, Metz PL, Escaler M, Conner AJ (2003) The release of genetically modified crops into the environment. Part I. Overview of current status and regulations. Plant J 33:1–18CrossRefPubMedGoogle Scholar
  58. 58.
    National Research Council (2002) Environmental effects of transgenic plants; the scope an adequacy of regulation. National Academy Press, Washington, D.C.Google Scholar
  59. 59.
    Nojiri H, Shintani M, Omori T (2004) Divergence of mobile genetic elements involved in the distribution of xenobiotic-catabolic capacity. Appl Microbiol Biotechnol 64:154–174CrossRefPubMedGoogle Scholar
  60. 60.
    Ogawa N, Chakrabarty A, Zaborina O (2003) Degradative plasmids. In: Funnell B, Phillips PW (eds) Plasmid biology. ASM Press, Washington, pp 341–376Google Scholar
  61. 61.
    Pieper DH, Reineke W (2000) Engineering bacteria for bioremediation. Curr Opin Biotechnol 11:262–270CrossRefPubMedGoogle Scholar
  62. 62.
    Pilon M, Owen JD, Garifullina GF, Kurihara T, Mihara H, Esaki N, Pilon-Smits E (2003) Enhanced selenium tolerance and accumulation in transgenic Arabidopsis expressing a mouse selenocysteine lyase. Plant Physiol 131:1250–1257CrossRefPubMedGoogle Scholar
  63. 63.
    Pilon-Smits E, Pilon M (2000) Breeding mercury-breathing plants for environmental cleanup. Trends Plant Sci 5:235–236CrossRefPubMedGoogle Scholar
  64. 64.
    Ripp S, Nivens DE, Werner C, Sayler GS (2000) Bioluminescent most-probable-number monitoring of a genetically engineered bacterium during a long-term contained field release. Appl Microbiol Biotechnol 53:736–741CrossRefPubMedGoogle Scholar
  65. 65.
    Ronchel MC, Ramos JL (2001) Dual system to reinforce biological containment of recombinant bacteria designed for rhizoremediation. Appl Environ Microbiol 67:2649–2656PubMedCrossRefGoogle Scholar
  66. 66.
    Rugh CL, Wilde HD, Stack NM, Thompson DM, Summers AO, Meagher RB (1996) Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial merA gene. Proc Natl Acad Sci USA 93:3182–3187CrossRefPubMedGoogle Scholar
  67. 67.
    Salt DE, Smith RD, Raskin I (1998) Phytoremediation Annu Rev Plant Physiol Plant Mol Biol 49:643–668CrossRefGoogle Scholar
  68. 68.
    Sayler GS Ripp S (2000) Field applications of genetically engineered microorganisms for bioremediation processes. Curr Opin Biotechnol 11:286–289CrossRefPubMedGoogle Scholar
  69. 69.
    Schernthaner JP, Fabijanski SF, Arnison PG, Racicot M, Robert LS (2003) Control of seed germination in transgenic plants based on the segregation of a two-component genetic system. Proc Natl Acad Sci USA 100:6855–6859CrossRefPubMedGoogle Scholar
  70. 70.
    Schweizer HP (2003) Applications of the Saccharomyces cerevisiae Flp-FRT system in bacterial genetics. J Mol Microbiol Biotechnol 5:67–77CrossRefPubMedGoogle Scholar
  71. 71.
    Scutt CP, Zubko E, Meyer P (2002) Techniques for the removal of marker genes from transgenic plants. Biochimie 84:1119–1126CrossRefPubMedGoogle Scholar
  72. 72.
    Shaw LJ, Burns RG (2003) Biodegradation of organic pollutants in the rhizosphere. Adv Appl Microbiol 53:1–60PubMedCrossRefGoogle Scholar
  73. 73.
    Singh OV, Jain RK (2003) Phytoremediation of toxic aromatic pollutants from soil. Appl Microbiol Biotechnol 63:128–135CrossRefPubMedGoogle Scholar
  74. 74.
    Smyth S, Khachatourians GG, Phillips PW (2002) Liabilities and economics of transgenic crops. Nat Biotechnol 20:537–541CrossRefPubMedGoogle Scholar
  75. 75.
    Snow AA (2002) Transgenic crops, why gene flow matters. Nat Biotechnol 20:542CrossRefPubMedGoogle Scholar
  76. 76.
    Song WY, Sohn EJ, Martinoia E, Lee YJ, Yang YY, Jasinski M, Forestier C, Hwang I, Lee Y (2003) Engineering tolerance and accumulation of lead and cadmium in transgenic plants. Nat Biotechnol 21:914–919CrossRefPubMedGoogle Scholar
  77. 77.
    Tepfer D, Garcia-Gonzales R, Mansouri H, Seruga M, Message B, Leach F, Perica M (2003) Homology-dependent DNA transfer from plants to a soil bacterium under laboratory conditions: implications in evolution and horizontal gene transfer. Transgenic Res 12:425–437CrossRefPubMedGoogle Scholar
  78. 78.
    Torres B, Garcia J, Diaz E (2003) Plasmids as tools for containment. In: Funnell B, Phillips G (eds) Plasmid biology ASM, Washington, pp 589–601Google Scholar
  79. 79.
    Torres B, Jaenecke S, Timmis KN, Garcia JL, Diaz E (2003) A dual lethal system to enhance containment of recombinant micro-organisms. Microbiology 149:3595–3601CrossRefPubMedGoogle Scholar
  80. 80.
    Valls M, de Lorenzo V (2002) Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution. FEMS Microbiol Rev 26:327–338CrossRefPubMedGoogle Scholar
  81. 81.
    Van Huysen T, Abdel-Ghany S, Hale KL, LeDuc D, Terry N, Pilon-Smits EA (2003) Overexpression of cystathionine-gamma-synthase enhances selenium volatilization in Brassica juncea. Planta 218:71–78CrossRefPubMedGoogle Scholar
  82. 82.
    Van Veen JA, van Overbeek LS, van Elsas JD (1997) Fate and activity of microorganisms introduced into soil. Microbiol Mol Biol Rev 61:121–135PubMedGoogle Scholar
  83. 83.
    Wackett LP, Ellis LB (1999) Predicting biodegradation. Environ Microbiol 1:119–124CrossRefPubMedGoogle Scholar
  84. 84.
    Wangeline AL, Burkhead JL, Hale KL, Lindblom SD, Terry N, Pilon M, Pilon-Smits EA (2004) Overexpression of ATP sulfurylase in Indian mustard: effects on tolerance and accumulation of twelve metals. J Environ Qual 33:54–60PubMedCrossRefGoogle Scholar
  85. 85.
    Watanabe ME (2001) Can bioremediation bounce back? Nat Biotechnol 19:1111–1115CrossRefPubMedGoogle Scholar
  86. 86.
    Wilson M, Lindow SE (1993) Release of recombinant microorganisms. Annu Rev Microbiol 47:913–944CrossRefPubMedGoogle Scholar
  87. 87.
    Zhu YL, Pilon-Smits EA, Tarun AS, Weber SU, Jouanin L, Terry N (1999) Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing gamma-glutamylcysteine synthetase. Plant Physiol 121:1169–1178CrossRefPubMedGoogle Scholar
  88. 88.
    Zuo J, Niu QW, Moller SG, Chua NH (2001) Chemical-regulated, site-specific DNA excision in transgenic plants. Nat Biotechnol 19:157–161CrossRefPubMedGoogle Scholar
  89. 89.
    Zuo J, Niu QW, Ikeda Y, Chua NH (2002) Marker-free transformation: increasing transformation frequency by the use of regeneration-promoting genes. Curr Opin Biotechnol 13:173–180CrossRefPubMedGoogle Scholar

Copyright information

© Society for Industrial Microbiology 2005

Authors and Affiliations

  1. 1.Laboratory of Cellular BiologyInstitut National de la Recherche AgronomiqueVersaillesFrance

Personalised recommendations