Skip to main content
Log in

Comparing recovering efficiency of immunomagnetic separation and centrifugation of mycobacteria in metalworking fluids

  • Environmental Biotechnology
  • Published:
Journal of Industrial Microbiology and Biotechnology

Abstract

The accurate detection and enumeration of Mycobacterium immunogenum in metalworking fluids (MWFs) is imperative from an occupational health and industrial fluids management perspective. We report here a comparison of immunomagnetic separation (IMS) coupled to flow-cytometric enumeration, with traditional centrifugation techniques for mycobacteria in a semisynthetic MWF. This immunolabeling involves the coating of laboratory-synthesized nanometer-scale magnetic particles with protein A, to conjugate a primary antibody (Ab), specific to Mycobacterium spp. By using magnetic separation and flow-cytometric quantification, this approach enabled much higher recovery efficiency and fluorescent light intensities in comparison to the widely applied centrifugation technique. This IMS technique increased the cell recovery efficiency by one order of magnitude, and improved the fluorescence intensity of the secondary Ab conjugate by 2-fold, as compared with traditional techniques. By employing nanometer-scale magnetic particles, IMS was found to be compatible with flow cytometry (FCM), thereby increasing cell detection and enumeration speed by up to two orders of magnitude over microscopic techniques. Moreover, the use of primary Ab conjugated magnetic nanoparticles showed better correlation between epifluorescent microscopy counts and FCM analysis than that achieved using traditional centrifugation techniques. The results strongly support the applicability of the flow-cytometric IMS for microbial detection in complex matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell, 4th edn. Garland, New York, pp 470, 584, 599

  2. Bard DG, Ward BB (1997) A species-specific bacterial productivity method using immunomagnetic separation and rediotracer experiment. J Microbiol Methods 28:207–219

    Article  CAS  Google Scholar 

  3. Bennett EO (1972) The biology of metalworking fluids. Lubr Eng July:237–247

    Google Scholar 

  4. Bernstein DI, Lummus ZI, Santilli G, Siskosky J, Berstein IL (1995) A hypersensitivity pneumonitis disorder associated with exposure to metalworking fluid aerosols. Chest 108:636–641

    Article  PubMed  CAS  Google Scholar 

  5. Boulanger CA, Edelstein PH (1995) Precision and accuracy of recovery of Legionella pneumophila from seeded tap water by filtration and centrifugation. Appl Environ Microbiol 61:1805–1809

    PubMed  CAS  Google Scholar 

  6. Calleja GB (1984) Microbial aggregation. CRC, Boca Raton, Fla., pp 49–52

    Google Scholar 

  7. Caruso F (1999) Fabrication of immunoglobulin mono- and multilayers and their application for immunosensing. In: Lvov YM, Möhwald H (eds) Protein architecture: interfacing molecular assemblies and immobilization biotechnology. Dekker, New York, p 201

    Google Scholar 

  8. Cascales E, Bernadac A, Gavioli M, Lazzaroni JC, Lloubes R (2002) Pal lipoprotein of Escherichia coli plays a major role in outer membrane integrity. J Bacteriol 184:754–759

    PubMed  CAS  Google Scholar 

  9. Chang SC, Rihana A, Bahrman S, Gruden CL, Khijniak AI, Skerlos SJ, Adriaens P (2005) Flow cytometric detection and quantification of mycobacteria in metalworking fluids. Int Biodeterior Biodegrad 54:105–112

    Article  CAS  Google Scholar 

  10. Childers JC (1994) The chemistry of metalworking fluids. In: Byers JM (ed) Metalworking fluids. Dekker, New York, pp 165–189

    Google Scholar 

  11. Cornell RM, Schwertmann U (2003) The iron oxides. Wiley, Weinheim, Germany, pp 536–537

  12. Danielsen KM (2004) Reductively dechlorination of carbon tetrachloride by magnetite: the importance of geochemical conditions. Dissertation, University of Michigan

    Google Scholar 

  13. Favrin SJ, Jassim SA, Griffiths MW (2003) Application of a novel immunomagnetic separation-bacteriophage assay for the detection of Salmonella enteritidis and Escherichia coli O157:H7 in food. Int J Food Microbiol 85:63–71

    Article  PubMed  Google Scholar 

  14. Furtado ALD, Casper P (2000) Different methods for extracting bacteria from freshwater sediment and a simple method to measure bacterial production in sediment samples. J Microbiol Methods 41:249–257

    Article  PubMed  Google Scholar 

  15. Galli C, Coen MC, Hauert R, Katanaev VL, Gröning P, Schlapbach L (2002) Creation of nanostructures to study the topographical dependency of protein adsorption. Colloids Surf B: Biointerfaces 26:225–267

    Article  Google Scholar 

  16. Garcia MED, San-Medel A (1986) Dye-surfactant interaction: a review. Talanta 33:255–264

    Article  CAS  Google Scholar 

  17. Giacomelli CE (2002) Adsorption of immunoglobulins at solid-liquid interfaces. In: Hubbard AT (ed) Encylopedia of surface and colloid science. Dekker, New York, pp 418–439

  18. Grant IR, Ball HJ, Rowe MT (1998) Isolation of Mycobacterium paratuberculosis from milk by immunomagnetic separation. Appl Environ Microbiol 64:3153–3158

    PubMed  CAS  Google Scholar 

  19. Gruden CL, Skerlos SJ, Adriaens P (2004) Flow cytometry for microbial sensing in environmental sustainability applications: current status and future prospects. FEMS Microbiol Ecol 49:37–49

    Article  CAS  Google Scholar 

  20. Harrison STL (1991) Bacterial cell disruption: a key unit operation in the recovery of intracellular products. Biotechnol Adv 9:217–240

    Article  PubMed  CAS  Google Scholar 

  21. Hills EC (1977) Microbial infection of cutting fluids. Tribol Int 10: 49–54

    Article  Google Scholar 

  22. Hodgson MJ, Bracker A, Yang C, Storey E, Jarvis BJ, Milton D, Lummus Z, Bernstein D, Cole S (2001) Hypersensitivity pneumonitis in a metal-working environment. Am J Ind Med 39:616–628

    Article  PubMed  CAS  Google Scholar 

  23. Horne JC, Huang Y, Liu G-Y, Blanchard GJ (1999) Correspondence between layer morphology and intralayer excitation transport dynamics in Zirconium-phosphonated monolayers. J Am Chem Soc 121:4419–4426

    Article  CAS  Google Scholar 

  24. Huang S-H, Liao M-H, Chen D-H (2003) Direct binding and characterization of lipase onto nanoparticles. Biotechnol Prog 19:1095–1100

    Article  PubMed  CAS  Google Scholar 

  25. Huibers PDT, Labonav VS, Karitzky AR, Shas DO, Karelson M (1997) Prediction of critical micelle concentration using a quantitative structure-property relationship approach. J Colloid Interface Sci 187:113–120

    Article  PubMed  CAS  Google Scholar 

  26. Independent Lubricant Manufacture Association (2000) ILMA Report, in Lubricants World, November, p 10

  27. Jacobsen CN, Fremming C, Jacobsen M (1997) Immunomagnetic separation of Listeria monocytogenes for flow cytometric determination of viable cells in liquid. J Microbiol Methods 31:75–81

    Article  Google Scholar 

  28. Kepner RL Jr, Pratt JR (1994) Use of fluorochromes for direct enumeration of total bacteria in environmental samples: past and present. Microbiol Rev 58:603–615

    PubMed  CAS  Google Scholar 

  29. Konerachá M, Kopčanský P, Timbo M, Ramchand CN, de Sequeira A, Trevan M (2002) Direct binding procedure of proteins and enzymes to fine magnetic particles. J Mol Catal B: Enzymatics 18:13–18

    Article  Google Scholar 

  30. Kreiss K, Cox-Ganser J (1997) Metalworking fluid-associated hypersensitivity pneumonitis: a workshop summary. Am J Ind Med 32:423–432

    Article  PubMed  CAS  Google Scholar 

  31. Kurth DG, Bein T (1995) Thin films of (3-aminopropyl)triethosysilane on aluminum oxide and gold substrates. Langmuir 11:3061–3067

    Article  CAS  Google Scholar 

  32. Kusunoki H, Bari ML, Kita T, Sugii S, Uemura T (2000) Flow cytometry for the detection of enterohaemorrhagic Escherichia coli O157:H7 with latex beads sensitized with specific antibody. J Vet Med Ser B Infect Dis Vet Publ Health 47:551–559

    CAS  Google Scholar 

  33. Lindqvist R (1997) Preparation of PCR samples from food by a rapid by a rapid and simple centrifugation technique evaluated by detection of Escherichia coli O157:H7. Int J Food Microbiol 37:73–82

    Article  PubMed  CAS  Google Scholar 

  34. Liu Y, Che Y, Li Y (2001) Rapid detection of Salmonella typhimurium using immunomagnetic saparation and immuno-optical sensing method. Sens Actuators B 72:214–218

    Article  Google Scholar 

  35. Lu B, Smyth MR, O’Kennedy R (1996) Immunological activities of IgG antibody on pre-coated Fc receptor surfaces. Anal Chim Acta 331:97–102

    Article  CAS  Google Scholar 

  36. Mattsby-Baltzer I, Sandin M, Ahlstrom B, Allenmark S, Edebo M, Falsen E, Pedersen K, Rodin N, Thompson RA, Edebo L (1989) Microbial growth and accumulation in industrial metal-working fluids. Appl Environ Microbiol 55:2681–2689

    PubMed  CAS  Google Scholar 

  37. Mazurek GH, Reddy V, Murphy D, Ansari T (1996) Detection of Mycobacterium tuberculosis in cerebrospinal fluids following immunomagnetic enrichment. J Clin Microbiol 34:450–453

    PubMed  CAS  Google Scholar 

  38. Mehta RV, Upadhyay RV, Charles SW, Ramchand CN (1997) Direct binding of protein to magnetic particles. Biotechnol Tech 11:493–496

    Article  CAS  Google Scholar 

  39. Miltenyi S, Muller W, Weichel W, Radbruch A (1990) High-gradient magnetic cell-separation with MACS. Cytometry 11:231–238

    Article  PubMed  CAS  Google Scholar 

  40. Molday RS, Molday LL (1984) Separation of cells labeled with immunospecific iron dextran microspheres using high-gradient magnetic chromatography. FEBS Lett 170:232–238

    Article  PubMed  CAS  Google Scholar 

  41. Molecular Probes Handbook. http://www.probes.com/handbook

  42. Moore JS, Christensen M, Wilson RW (2000) Mycobacterial contamination of metalworking fluids: involvement of a possible new taxon of rapidly growing mycobacteria. Am Inst Hyg Assoc J 61:205–213

    CAS  Google Scholar 

  43. Muilenburg ML, Burge HA, Sweet T (1993) Hypersensitivity pneumonitis and exposure to acid-fast bacilli in coolant aerosols. J Allergy Clin Immunol 91:311

    Google Scholar 

  44. Nebe-von-Caron G, Stephens PJ, Hewitt CJ, Powell JR, Badley RA (2000) Analysis of bacterial function by multi-colour fluorescence flow cytometry and single cell sorting. J Microbiol Methods 42:97–114

    Article  PubMed  CAS  Google Scholar 

  45. Ortalo-Magné A, Lemassu A, Lanéelle M-A, Bardou F, Silve G, Gounon P, Marchal G, Daffé M (1996) Identification of the surface-exposed lipids on the cell envelopes of Mycobacterium tuberculosis and other mycobacterial species. J Bacteriol 178:456–461

    PubMed  Google Scholar 

  46. Ozane V, Ortalo-Magné A, Vercellone A, Fournié J-J, Daffé M (1996) Cytometric detection of mycobacterial surface antigens: exposure of mannosyl epitopes and of the arabinan segment of arabinomannans. J Bacteriol 178:7254–7259

    PubMed  Google Scholar 

  47. Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 36:R167–R181

    Article  CAS  Google Scholar 

  48. Passman FJ, Rossmoore HW (2002) Reassessing the health risk associated with employee exposure to metalworking fluid microbes. Lubr Eng 58:30–38

    Google Scholar 

  49. Pine Chemical Association (2001) Test plan for tall oil and related substances. http://www.epa.gov/chemrtk/tofars/c13056tc.htm

  50. Porter J, Deere D, Hardman M, Edwards C, Pickup R (1997) Go with the flow—use of flow cytometry in environmental microbiology. FEMS Microbiol Ecol 24:93–101

    Article  CAS  Google Scholar 

  51. Porter MR (1994) Handbook of surfactants. Chapman & Hall, New York, pp 155–159

    Google Scholar 

  52. Rait VK, Xu L, O’Leary TJ, Mason JT (2004) Modeling formalin fixation and antigen retrieval with bovine pancreatic RNase A. II. Interrelationship of cross-linking, immunoreactivity, and heat treatment. Lab Invest 84:300–306

    Article  PubMed  CAS  Google Scholar 

  53. Roberts B, Hirst R (1997) Immunomagnetic separation and PCR for detection of Mycobacterium ulcerns. J Clin Microbiol 35:2709–2711

    PubMed  CAS  Google Scholar 

  54. Roland I, Piel G, Delattre L, Evrard B (2003) Systematic characterization of oil-in-water emulsions for formulation design. Int J Pharm 263:85–94

    Article  PubMed  CAS  Google Scholar 

  55. Rossmoore HW, Holtzman GH, Kondek L (1976) Microbial ecology with a cutting edge. In: Miles J, Kaplan AM (eds) Proceedings of the third international biodegradation symposium. Applied Science Publishers, London, UK

  56. Šafařík I, Šafaříková M (1999) Use of magnetic techniques for isolation of cells. J Chromatogr B 722:33–53

    Article  Google Scholar 

  57. Šafařík I, Šafaříková M (2002) Magnetic nanoparticles and biosciences. Monatshefte für Chemie 133:737–759

    Google Scholar 

  58. Seo KH, Brackett RE, Frank JF (1998) Rapid detection of Escherichia coli O157:H7 using immunomagnetic flow cytometry in ground beef, apple juice, and milk. Int J Food Microbiol 44:115–123

    Article  PubMed  CAS  Google Scholar 

  59. Shelton BG, Flanders W, Morris GK (1999) Mycobacterium sp. as a possible cause of hypersensitivity pneumonitis in machine workers. Emerg Infect Dis 5:270–273

    Article  PubMed  CAS  Google Scholar 

  60. Shinkai M (2002) Functional magnetic particles for medical application. J Biosci Bioeng 94:606–613

    PubMed  CAS  Google Scholar 

  61. Shinkai M, Wang J, Kamihira M, Iwata M, Honda H, Kobayashi T (1992) Rapid enzyme-linked immunosorbent assay with functional magnetite particle. J Ferment Bioeng 73:166–168

    Article  CAS  Google Scholar 

  62. Tant CO, Bennett EO (1956) The isolation of pathogenic bacteria from used emulsion oils. Appl Microbiol 4:332–338

    PubMed  Google Scholar 

  63. Tso SF, Taghon GL (1997) Enumeration of protozoa and bacteria in muddy sediment. Microb Ecol 33:144–148

    Article  PubMed  Google Scholar 

  64. Turková J (1999) Oriented immobilization of biologically active proteins as a tool for revealing protein interactions and function. J Chromatogr B 722:11–31

    Article  Google Scholar 

  65. United States Department of Health and Human Services (1998) Criteria for a recommended standard: occupational exposure to metalworking fluids. HIOSH, Cincinnati, Ohio

    Google Scholar 

  66. Van Os NM, Haak JR, Rupert LAM (1993) Physico-chemical properties of selected anionic, cationic, and nonionic surfactants. Elsevier, Amsterdam, pp 90–93

    Google Scholar 

  67. Veal DA, Deere D, Ferraro B, Piper J, Attfield PV (2000) Fluorescence staining and flow cytometry for monitoring microbial cells. J Immunol Methods 243:191–210

    Article  PubMed  CAS  Google Scholar 

  68. Vives-Rego J, Lebaron P, Nebe-von Caron G (2000) Current and future applications of flow cytometry in aquatic microbiology. FEMS Microbiol Rev 24:429–448

    Article  PubMed  CAS  Google Scholar 

  69. Wallace RJ Jr, Zhang Y, Wilson R, Mann L, Rossmoore HW (2002) Presence of a single genotype of the newly described species Mycobacterium immunogenum in industrial metalworking fluids associated with hypersensitivity pneumonitis. Appl Environ Microbiol 68:5580–5584

    PubMed  CAS  Google Scholar 

  70. Weetall HH (1976) Covalent coupling methods for inorganic supports. Methods Enzymol 44:134–148

    Article  PubMed  CAS  Google Scholar 

  71. Weetall HH (1992) Preparation of immobilized proteins covalently coupled through silane coupling agents to inorganic supports. In: Proceedings of the Mosbach symposium on biochemical technology, 2–4 December 1992, Lund, Sweden

  72. Weiss L, Pue C, Rossmoore HW, Fink J, Harney J, Trout D (2001) Respiratory illness in workers exposed to metalworking fluid contaminated with nontuberculous Mycobacteria—Ohio, 2001. J Am Med Assoc 287:3073–3074

    Google Scholar 

  73. Omitted

  74. Wetterö J, Askendal A, Tengvall P, Bengtsson T (2003) Interactions between surface-bound actin and complement, platelets, and neutrophils. J Biomed Mater Res Part A 66A:162–175

    Article  CAS  Google Scholar 

  75. Wilson RW, Steingrube VA, Bottger EC, Springer B, Brown-Elliott BA, Vincent V, Jost KC Jr, Zhang Y, Garcia MJ, Chiu SH, Onyi GO, Rossmoore H, Nash DR, Wallace RJ Jr (2001) Mycobacterium immunogenum sp. nov., a novel species related to Mycobacterium abscessus and associated with clinical disease, pseudo-outbreaks and contaminated metalworking fluids: an international cooperative study on mycobacterial taxonomy. Int J Syst Evol Microbiol 51:1751–1764

    PubMed  CAS  Google Scholar 

  76. Xiao SJ, Textot M, Spencer N, Wieland M, Keller B, Sigrit H (1997) Immobilization of the cell-adhesive peptide Arg-Gly-Asp-Cyc (RGDC) on titanium surfaces by covalent chemical attachment. J Mater Sci Mater Med 8:867–872

    Article  PubMed  CAS  Google Scholar 

  77. Yi WC, Hsiao S, Liu J-H, Soo P-C, Horng Y-T, Tsai W-C, Lai H-C, Teng L-J, Hsueh P-R, Hsieh R-F, Luh K-T, Ho S-W (1998) Use of fluorescein-labeled antibody and fluorescence activated cell sorter for rapid identification of Mycobacterium species. Biochem Biophys Res Commun 250:403–408

    Article  PubMed  CAS  Google Scholar 

  78. Zhang Y, Kohler N, Zhang M (2002) Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials 23:1553–1561

    Article  PubMed  CAS  Google Scholar 

  79. Zimmerman JB, Hayes KF, Skerlos SJ (2004) Influence of ion accumulation on the emulsion stability and performance of semi-synthetic metalworking fluids. Environ Sci Technol 38:2482–2490

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Karlin M. Danielsen and Dr. Kim F. Hayes for providing MNPs. This research is partly funded by a scholarship to Shu-Chi Chang (No. 1999049) from the Ministry of Education, Taiwan, Republic of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Adriaens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, SC., Anderson, T.I., Bahrman, S.E. et al. Comparing recovering efficiency of immunomagnetic separation and centrifugation of mycobacteria in metalworking fluids. J IND MICROBIOL BIOTECHNOL 32, 629–638 (2005). https://doi.org/10.1007/s10295-005-0238-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-005-0238-x

Keywords

Navigation