Skip to main content
Log in

Torularhodin and torulene are the major contributors to the carotenoid pool of marine Rhodosporidium babjevae (Golubev)

  • Original Paper
  • Published:
Journal of Industrial Microbiology and Biotechnology

Abstract

A carotenoid-producing yeast strain, isolated from the sub-arctic, marine copepod Calanus finmarchicus, was identified as Rhodosporidium babjevae (Golubev) according to morphological and biochemical characteristics and phylogenetic inference from the small-subunit ribosomal RNA gene sequence. The total carotenoids content varied with cultivation conditions in the range 66–117 μg per g dry weight. The carotenoid pool, here determined for the first time, was dominated by torularhodin and torulene, which collectively constituted 75–91% of total carotenoids under various regimes of growth. β-Carotene varied in the range 5–23%. A high-peptone/low-yeast extract (weight ratio 38:1) marine growth medium favoured the production of torularhodin, the carotenoid at highest oxidation level, with an average of 63% of total carotenoids. In standard yeast medium (YM; ratio 1.7:1), torularhodin averaged 44%, with increased proportions of the carotenes, torulene and β-carotene. The anticipated metabolic precursor γ-carotene (β,ψ-carotene) constituted a minor fraction (≤8%) under all conditions of growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bakin A, Ofengand J (1995) Mapping of the 13 pseudouridine residues in Saccharomyces cerevisiae small subunit ribosomal RNA to nucleotide resolution. Nucleic Acids Res 23:3290–3294

    Article  PubMed  CAS  Google Scholar 

  2. Bhosale P, Gadre RV (2002) Manipulation of temperature and illumination conditions for enhanced beta-carotene production by mutant 32 of Rhodotorula glutinis. Lett Appl Microbiol 34:349–353

    Article  PubMed  CAS  Google Scholar 

  3. Britton G, Liaaen-Jensen S, Pfander H (eds) (1995) Carotenoids. Isolation and analysis, vol 1A. Birkhäuser, Basel

  4. Britton G, Liaaen-Jensen S, Pfander H (eds) (2004) Carotenoids. Handbook. Birkhäuser, Basel

  5. Buzzini P (2001) Batch and fed-batch carotenoid production by Rhodotorula glutinis–Debaryomyces castellii co-cultures in corn syrup. J Appl Microbiol 90:843–847

    Article  PubMed  CAS  Google Scholar 

  6. Buzzini P, Martini A (2000) Production of carotenoids by strains of Rhodotorula glutinis cultured in raw materials of agro-industrial origin. Bioresour Technol 71:41–44

    Article  CAS  Google Scholar 

  7. Buzzini P, Rubinstein L, Martini A (2001) Production of yeast carotenoids by using agro-industrial by-products. Agro Food Ind Hi-Tech 12:7–10

    Google Scholar 

  8. Davoli P, Weber RWS (2002) Carotenoid pigments from the red mirror yeast, Sporobolomyces roseus. Mycologist 16:102–108

    Article  Google Scholar 

  9. Davoli P, Mierau V, Weber RWS (2004) Carotenoids and fatty acids in red yeasts Sporobolomyces roseus and Rhodotorula glutinis. Appl Biochem Microbiol 40:392–397

    Article  CAS  Google Scholar 

  10. Frengova G, Simova E, Beshkova D (2004) Use of whey ultrafiltrate as a substrate for production of carotenoids by the yeast Rhodotorula rubra. Appl Biochem Biotechnol 112:133–141

    Article  PubMed  CAS  Google Scholar 

  11. Gadanho M, Sampaio JP (2002) Polyphasic taxonomy of the basidiomycetous yeast genus Rhodotorula: Rh. glutinis sensu stricto and Rh. dairenensis comb. nov. FEMS Yeast Res 2:47–58

    PubMed  CAS  Google Scholar 

  12. Gadanho M, Almeida J, Sampaio JP (2003) Assessment of yeast diversity in a marine environment in the south of Portugal by microsatellite-primed PCR. Antonie Van Leeuwenhoek 84:217–227

    Article  PubMed  CAS  Google Scholar 

  13. Golubev W (1993) Rhodosporidium Babjevae, a new heterothallic yeast species (Ustilaginales). Syst Appl Microbiol 16:445–449

    Google Scholar 

  14. Leonard J, Lygo B, Procter G (1998) Advanced practical organic chemistry. Nelson Thornes Publishers, Cheltenham

    Google Scholar 

  15. Lutnæs BF (2004) Chemical and spectroscopic studies of carotenoids and related compounds. PhD thesis, Norwegian University of Science and Technology (NTNU)

  16. Margalith P, Meydav S (1968) Some observations on carotenogenesis in yeast Rhodotorula mucilaginosa. Phytochemistry 7:765–768

    Article  CAS  Google Scholar 

  17. Perrier V, Dubreucq E, Galzy P (1995) Fatty-acid and carotenoid composition of Rhodotorula strains. Arch Microbiol 164:173–179

    Article  PubMed  CAS  Google Scholar 

  18. Sakaki H, Nakanishi T, Satonaka KY, Miki W, Fujita T, Komemushi S (2000) Properties of a high-torularhodin-producing mutant of Rhodotorula glutinis cultivated under oxidative stress. J Biosci Bioeng 89:203–205

    Article  PubMed  CAS  Google Scholar 

  19. Sakaki H, Nakanishi T, Komemushi S, Namikawa K, Miki W (2001) Torularhodin as a potent scavenger against peroxyl radicals isolated from a soil yeast, Rhodotorula glutinis. J Clin Biochem Nutr 30:1–10

    CAS  Google Scholar 

  20. Sakaki H, Nakanishi T, Tada A, Miki W, Komemushi S (2001) Activation of torularhodin production by Rhodotorula glutinis using weak white light irradiation. J Biosci Bioeng 92:294–297

    Article  PubMed  CAS  Google Scholar 

  21. Sakaki H, Nochide H, Komemushi S, Miki W (2002) Effect of active oxygen species on the productivity of torularhodin by Rhodotorula glutinis no. 21. J Biosci Bioeng 93:338–340

    Article  PubMed  CAS  Google Scholar 

  22. Simpson KL, Nakayama TO, Chichester CO (1964) Biosynthesis of yeast carotenoids. J Bacteriol 88:1688–1694

    PubMed  CAS  Google Scholar 

  23. Squina FM, Yamashita F, Pereira JL, Mercadante AZ (2002) Production of carotenoids by Rhodotorula rubra and R. glutinis in culture medium supplemented with sugar cane juice. Food Biotechnol 16:227–235

    Article  CAS  Google Scholar 

  24. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported financially by the Norwegian Research Council project 140347/420.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bjarne Landfald.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sperstad, S., Lutnæs, B.F., Stormo, S.K. et al. Torularhodin and torulene are the major contributors to the carotenoid pool of marine Rhodosporidium babjevae (Golubev). J IND MICROBIOL BIOTECHNOL 33, 269–273 (2006). https://doi.org/10.1007/s10295-005-0065-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-005-0065-0

Keywords

Navigation