Skip to main content
Log in

A wide-range integrative yeast expression vector system based on Arxula adeninivorans-derived elements

  • Original Paper
  • Published:
Journal of Industrial Microbiology and Biotechnology

Abstract

An Arxula adeninivorans integration vector was applied to a range of alternative yeast species including Saccharomyces cerevisiae, Debaryomyces hansenii, Debaryomyces polymorphus, Hansenula polymorpha and Pichia pastoris. The vector harbours a conserved A. adeninivorans-derived 25S rDNA sequence for targeting, the A. adeninivorans-derived TEF1 promoter for expression control of the reporter sequence, and the Escherichia coli-derived hph gene conferring resistance against hygromycin B for selection of recombinants. Heterologous gene expression was assessed using a green fluorescent protein (GFP) reporter gene. The plasmid was found to be integrated into the genome of the various hosts tested; recombinant strains of all species exhibited heterologous gene expressions of a similar high level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a, b
Fig. 3
Fig. 4a–d

Similar content being viewed by others

References

  1. Bergkamp RJ, Kool IM, Geerse RH, Planta RJ (1992) Multiple-copy integration of the alpha-galactosidase gene from Cyamopsis tetragonoloba into the ribosomal DNA of Kluyveromyces lactis. Curr Genet 21:365–370

    CAS  PubMed  Google Scholar 

  2. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  3. Bruinenberg PM (1986) The NADP(H) redox couple in yeast metabolism. Antonie van Leeuwenhoek 52:411–429

    CAS  PubMed  Google Scholar 

  4. Cereghino JL, Cregg JM (2000) Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol Rev 24:45–66

    Article  CAS  PubMed  Google Scholar 

  5. Cox H, Mead D, Sudbery P, Eland RM, Mannazzu I, Evans L (2000) Constitutive expression of recombinant proteins in the methylotrophic yeast Hansenula polymorpha using the PMA1 promoter. Yeast 16:1191–1203

    Article  CAS  PubMed  Google Scholar 

  6. Dohmen RJ, Strasser AW, Höner CB, Hollenberg CP (1991) An efficient transformation procedure enabling long-term storage of competent cells of various yeast genera. Yeast 7:691–692

    CAS  PubMed  Google Scholar 

  7. Faber KN, Harder W, Ab G, Veenhuis M (1995) Review: methylotrophic yeasts as factories for the production of foreign proteins. Yeast 11:1331–1344

    CAS  PubMed  Google Scholar 

  8. Gellissen G (2000) Heterologous protein production in methylotrophic yeasts. Appl Microbiol Biotechnol 54:741–750

    Article  CAS  PubMed  Google Scholar 

  9. Gellissen G (2002) Hansenula polymorpha—biology and applications. Wiley-VCH, Weinheim

  10. Gellissen G, Melber K (1996) Methylotrophic yeast Hansenula polymorpha as production organism for recombinant pharmaceuticals. Arzneimittelforschung 46:943–948

    CAS  PubMed  Google Scholar 

  11. Gilbert SC, van Urk H, Greenfield AJ, McAvoy MJ, Denton KA, Coghlan D, Jones GD, Mead DJ (1994) Increase in copy number of an integrated vector during continuous culture of Hansenula polymorpha expressing functional human haemoglobin. Yeast 10:1569–1580

    CAS  PubMed  Google Scholar 

  12. Glumoff V, Käppeli O, Fiechter A, Reiser J (1989) Genetic transformation of the filamentous yeast, Trichosporon cutaneum, using dominant selection markers. Gene 84:311–318

    Article  CAS  PubMed  Google Scholar 

  13. Guengerich L, Kang HA, Gellissen G, Suckow M (2004) A platform for heterologous gene expression based on the methylotrophic yeast Hansenula polymorpha. In: Kück U (ed) The mycota II—genetics and biotechnology, 2nd edn. Springer, Berlin Heidelberg New York, pp 273–287

  14. Heinemeyer W, Kleinschmidt JA, Saidowsky J, Escher C, Wolf DH (1991) Proteinase yscE, the yeast proteasome/multicatalytic-multifunctional proteinase: mutants unravel its function in stress induced proteolysis and uncover its necessity for cell survival. EMBO J 10:555–562

    CAS  PubMed  Google Scholar 

  15. Heinisch J, Hollenberg CP (1993) Yeasts. In: Rehm HJ, Reed G, Pühler A, Stadler P (eds) Biotechnology, vol 1—biological fundamentals, 2nd edn. VCH, Weinheim, pp 470–514

  16. Jigami Y, Odani T (1999) Mannosylphosphate transfer to yeast mannan. Biochim Biophys Acta 1426:355–345

    Google Scholar 

  17. Juretzek T, Le Dall MT, Mauersberger R, Gaillardin C, Barth G, Nicaud JM (2001) Vectors of gene expressions and amplification in the yeast Yarrowia lipolytica. Yeast 18:97–113

    Article  CAS  PubMed  Google Scholar 

  18. Kaster KR, Burgett SG, Ingolia TD (1984) Hygromycin B resistance as dominant selectable marker in yeast. Curr Genet 8:353–358

    CAS  Google Scholar 

  19. Klabunde J, Diesel A, Waschk D, Hollenberg CP, Gellissen G, Suckow M (2002) Single-step co-integration of multiple expressible genes into the ribosomal DNA of the methylotrophic yeast, Hansenula polymorpha. Appl Microbiol Biotechnol 58:797–805

    Article  CAS  PubMed  Google Scholar 

  20. Klabunde J, Kunze G, Gellissen G, Hollenberg CP (2003) Integration of heterologous genes in several yeast species using vectors containing a Hansenula polymorpha-derived rDNA-targeting element. FEMS Yeast Res 4:185–193

    Article  CAS  PubMed  Google Scholar 

  21. Kunze G, Kunze I (1994) Characterization of Arxula adeninivorans strains from different habitats. Antonie van Leeuwenhoek 65:29–34

    CAS  PubMed  Google Scholar 

  22. Kunze G, Bode R, Schmidt H, Samsonova IA, Birnbaum D (1987) Identification of a lys2 mutant of Candida maltosa by means of transformation. Curr Genet 11:385–391

    CAS  PubMed  Google Scholar 

  23. Kunze I, Hensel G, Adler K, Bernard J, Neubohn B, Nilsson C, Stoltenburg R, Kohlwein SD, Kunze G (1999) The green fluorescent protein targets secretory proteins to the yeast vacuole. Biochim Biophys Acta 1410:287–298

    Article  CAS  PubMed  Google Scholar 

  24. Le Dall MT, Nicaud JM, Gaillardin C (1994) Multiple-copy integration in the yeast Yarrowia lipolytica. Curr Genet 26:38–44

    PubMed  Google Scholar 

  25. Lopes TS, Hakkaart GJ, Koerts BL, Raue HA, Planta RJ (1991) Mechanism of high-copy-number integration of pMIRY-type vectors into the ribosomal DNA of Saccharomyces cerevisiae. Gene 105:83–90

    CAS  PubMed  Google Scholar 

  26. Müller S, Sandal T, Kamp-Hansen P, Dalboge H (1998) Comparison of expression systems in the yeasts Saccharomyces cerevisiae, Hansenula polymorpha, Kluyveromyces lactis, Schizosacchromyces pombe and Yarrowia lipolytica. Cloning of two novel promoters from Yarrowia lipolytica. Yeast 14:1267–1283

    Article  CAS  PubMed  Google Scholar 

  27. Piontek M, Hagedorn J, Hollenberg CP, Gellissen G, Strasser AW (1998) Two novel expression systems based on the yeasts Schwanniomyces occidentalis and Pichia stipitis. Appl Microbiol Biotechnol 50:331–338

    Article  CAS  PubMed  Google Scholar 

  28. Romanos MA, Scorer CA, Clare JJ (1992) Foreign gene expression in yeast: a review. Yeast 8:423–488

    CAS  PubMed  Google Scholar 

  29. Rose MD, Winston F, Hieter P (1990) Methods in yeast genetics. a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

  30. Rösel H, Kunze G (1995) Cloning and characterization of a TEF gene for elongation factor 1α from the yeast Arxula adeninivorans. Curr Genet 28:360–366

    Google Scholar 

  31. Rösel H, Kunze G (1996) Identification of a group-I intron within the 25S rDNA from the yeast Arxula adeninivorans. Yeast 12:1201–1208

    Article  PubMed  Google Scholar 

  32. Rösel H, Kunze G (1998) Integrative transformation of the dimorphic yeast Arxula adeninivorans LS3 based on hygromycin B resistance. Curr Genet 33:157–163

    Google Scholar 

  33. Ruetz S, Gros P (1994) Functional expression of P-glycoproteins in secretory vesicles. J Biol Chem 269:12277–12284

    CAS  PubMed  Google Scholar 

  34. Sudbery PE (1996) The expression of recombinant proteins in yeasts. Curr Opin Biotechnol 7:517–524

    Google Scholar 

  35. Tanaka A, Ohnishi N, Fukui S (1967) Studies on the formation of vitamins and their function in hydrocarbon fermentation: production of vitamin B6 by Candida albicans in hydrocarbon medium. J Ferment Technol 45:617–623

    CAS  Google Scholar 

  36. Valenzuela P, Medina A, Rutter WJ, Ammerer G, Hall BD (1982) Synthesis and assembly of hepatitis B virus surface antigen particles in yeast. Nature 298:347–350

    CAS  PubMed  Google Scholar 

  37. Vozza LA, Wittwer L, Higgins DR, Purcell TJ, Bergseid M, Collins-Racie LA, LaVallie ER, Hoeffler JP (1996) Production of a recombinant bovine enterokinase catalytic subunit in the methylotrophic yeast Pichia pastoris. Biotechnology 14:77–81

    CAS  PubMed  Google Scholar 

  38. Wartmann T, Böer E, Pico AH, Sieber H, Bartelsen O, Gellissen G, Kunze G (2002) High-level production and secretion of recombinant proteins by the dimorphic yeast Arxula adeninivorans. FEMS Yeast Res 2:363–369

    Article  CAS  PubMed  Google Scholar 

  39. Wittekindt NE, Wurgler FE, Sengstag C (1995) Functional expression of fused enzymes between human cytochrome P4501A1 and human NADPH-cytochrome P450 oxidoreductase in Saccharomyces cerevisiae. DNA Cell Biol 14:273–283

    CAS  PubMed  Google Scholar 

  40. Wolf K (1996) Nonconventional yeasts in biotechnology. Springer, Berlin Heidelberg New York

  41. Yehuda H, Droby S, Wisniewski M, Goldway M (2001) A transformation system for the biocontrol yeast, Candida oleophila, based on hygromycin B resistance. Curr Genet 40:282–287

    Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. I. Kunze for helpful discussion and critical reading of the manuscript. We also thank H. Bohlmann and R. Franz for excellent technical assistance. The experimental work was supported by grants from the Ministry of Economic, Nordrhein-Westfalen (TPW-9910v08), Bundesstiftung Umwelt (AZ 13048) and by Funds of the Chemical Industry (to G.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gotthard Kunze.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terentiev, Y., Pico, A.H., Böer, E. et al. A wide-range integrative yeast expression vector system based on Arxula adeninivorans-derived elements. J IND MICROBIOL BIOTECHNOL 31, 223–228 (2004). https://doi.org/10.1007/s10295-004-0142-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-004-0142-9

Keywords

Navigation