Skip to main content
Log in

Cloning and expression of fungal phytases in genetically modified strains of Aspergillus awamori

  • Original Paper
  • Published:
Journal of Industrial Microbiology and Biotechnology

Abstract

In an effort to produce phytases cost-effectively, and to determine the efficiency of a novel expression system, the genes for Aspergillus awamori (phyA) phytase and Aspergillus fumigatus (phyA) phytase (a putative thermostable enzyme) were cloned and overexpressed in A. awamori. Regulation of phytase expression was achieved by separately placing the genes under the transcriptional control of the glucoamylase A (glaA) promoter of A. awamori. A gene fusion strategy was employed that involved the insertion of a hexapeptide Kex-2 protease cleavage site between the native glucoamylase and heterologous proteins and allowed for the efficient secretion and processing of the resultant chimeric proteins produced in this system by an endogenous Kex-2 protease. The genes for both of the above-mentioned phytases have already been cloned; however, this is the first report of either of the two phytases being fused with the glucoamylase gene, placed under the transcriptional control of the glaA promoter and overexpressed in A. awamori. Following transformation of A. awamori with separate expression vectors (one for each phytase), induction of phytase expression in submerged culture was effected by utilisation of a starch-containing medium. Optimisation of heterologous protein production in small shake-flask cultures involved changes in medium constituents. Maximum phytase expression levels of 200 phytase units (PU) ml−1 and 62 PU ml–1 for recombinantly expressed phytases from A. awamori and A. fumigatus, respectively, were obtained in crude fermentation extracts. Subsequent process scale-up to 4 l batch fermentation yielded phytase production levels comparable to those obtained on small scale. The enzyme yields herein reported demonstrate that the expression system developed and the host strain utilised were capable of expressing phytase at levels comparable to, or exceeding, previously reported data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5a–c.

Similar content being viewed by others

References

  1. Berka RM, Rey MW, Brown KM, Byun T, Klotz AV (1998) Molecular characterisation and expression of a phytase gene from the thermophilic fungus Thermomyces lanuginosus. Appl Environ Microbiol 64:4423–4427

    CAS  PubMed  Google Scholar 

  2. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilising the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  3. Chelius MK, Wodzinski RJ (1994) Strain improvement of Aspergillus niger for phytase production. Appl Microbiol Biotechnol 41:79–83

    Article  CAS  Google Scholar 

  4. Conneely OM (1992) From DNA to feed conversion: using biotechnology to improve enzyme yields and livestock performance. In: Lyons TP (ed) Biotechnology in the feed industry. Proceedings of Alltech's 8th annual symposium, Nicholasville, Ky., pp 57–66

  5. Cromwell GL, Coffey RD (1991) Phosphorous, a key essential nutrient, yet a possible major pollutant—its central role in animal nutrition. In: Lyons TP (ed) Biotechnology in the feed industry. Proceedings of Alltech's 7th annual symposium, Nicholasville, Ky., pp 133–145

  6. Dvorakova J (1998) Phytase: sources, preparation and exploitation. Folia Microbiol 43:323–338

    CAS  Google Scholar 

  7. Graf E (1986) Chemistry and applications of phytic acid: an overview. In: Graf E (ed) Phytic acid, chemistry and applications. Pilatus Press, Minneapolis, Minn., pp 1–21

  8. Han YM, Lei XG (1999) Role of glycosylation in the functional expression of an Aspergillus niger phytase (phyA) in Pichia pastoris. Arch Biochem Biophys 364:83–90

    Article  CAS  PubMed  Google Scholar 

  9. Han YM, Wilson DB, Lei XG (1999) Expression of an Aspergillus niger phytase gene (phyA) in Saccharomyces cerevisiae. Appl Environ Microbiol 65:1915–1918

    CAS  PubMed  Google Scholar 

  10. Heinonen JK, Lahti RJ (1981) A new and convenient colorimetric determination of inorganic orthophosphate and its application to the assay of inorganic pyrophosphatase. Anal Biochem 113:313–317

    CAS  PubMed  Google Scholar 

  11. Kim DH, Oh BC, Choi WC, Lee JK, Oh TK (1999) Enzymatic evaluation of Bacillus amyloliquefaciens phytase as a feed additive. Biotechnol Lett 21:925–927

    Article  CAS  Google Scholar 

  12. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    PubMed  Google Scholar 

  13. Li J, Hegeman CE, Hanlon RW, Lacy GH, Denbow DM, Grabau EA (1997) Secretion of active recombinant phytase from soybean cell suspension cultures. Plant Physiol 114:1103–1111

    Article  CAS  PubMed  Google Scholar 

  14. Liu B-L, Rafiq A, Tzeng Y-M, Rob A (1998) The induction and characterisation of phytase and beyond. Enzyme Microb Technol 22:415–424

    Article  CAS  Google Scholar 

  15. Maenz DD (2001) Enzymatic characteristics of phytases as they relate to their use in animal feeds. In: Bedford MR, Partridge GG (eds) Enzymes in farm animal nutrition. CABI Publishing, Oxon, UK, pp 61–84

  16. Miettinen-Oinonen A, Torkkeli T, Paloheimo M, Nevalainen H (1997) Overexpression of the Aspergillus niger pH 2.5 acid phosphatase gene in a heterologous host Trichoderma reesei. J Biotechnol 58:13–20

    Article  CAS  PubMed  Google Scholar 

  17. Moore E, Helly VR, Conneely OM, Ward PP, Power RF, Headon DR (1995) Molecular cloning, expression and evaluation of phosphohydrolases for phytate-degrading activity. J Ind Microbiol Biotechnol 14:396–402

    CAS  Google Scholar 

  18. Nelson TS, Shieh TR, Wodzinski RJ, Ware JH (1968) The availability of phytate phosphorous in soybean meal before and after treatment with a mold phytase. Poult Sci 47:1842–1848

    CAS  PubMed  Google Scholar 

  19. Pasamontes L, Haiker M, Wyss M, Tessier M, van Loon APGM (1997) Gene cloning, purification and characterisation of a heat-stable phytase from the fungus Aspergillus fumigatus. Appl Environ Microbiol 63:1696–1700

    CAS  PubMed  Google Scholar 

  20. Pen J, Verwoerd TC, van Paridon PA, Beudeker RF, van den Elzen PJM, Geerse K, van der Klis JD, Versteegh HAJ, van Ooyen AJJ, Hoekema A (1993) Phytase-containing transgenic seeds as a novel feed additive for improved phosphorus utilization. Biol Technol 11:811–814

    CAS  Google Scholar 

  21. Piddington CS, Houston CS, Paloheimo M, Cantrell M, Miettinen-Oinonen A, Nevalainen H, Rambosek J (1993) The cloning and sequencing of the genes encoding phytase (phy) and pH 2.5-optimum acid phosphatase (aph) from Aspergillus niger var awamori. Gene 133:55–62

    CAS  PubMed  Google Scholar 

  22. Rasmussen CD, Means RL, Lu KP, May GS, Means AR (1990) Characterisation and expression of the unique calmodulin gene of Aspergillus nidulans. J Biol Chem 265:13767–13775

    CAS  PubMed  Google Scholar 

  23. Ravindran V, Bryden WL, Kornegay ET (1995) Phytates: occurrence, bioavailability and implications in poultry nutrition. Poult Avian Biol Rev 6:125–143

    Google Scholar 

  24. Rodriguez E, Mullaney EJ, Lei XG (2000) Expression of the Aspergillus fumigatus phytase gene in Pichia pastoris and characterisation of the recombinant enzyme. Biochem Biophys Res Commun 268:373–378

    Article  CAS  PubMed  Google Scholar 

  25. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

    Google Scholar 

  26. Tilburn J, Scazzocchio C, Taylor GG, Zabicky-Zissman JH, Lockington RA, Davies RW (1983) Transformation by integration in Aspergillus nidulans. Gene 26:205–221

    CAS  PubMed  Google Scholar 

  27. Van Dijck PWM (1999) Chymosin and phytase: made by genetic engineering (no. 10 in a series of articles to promote a better understanding of the use of genetic engineering). J Biotechnol 67:77–80

    Article  Google Scholar 

  28. Van Gorcom RFM, van Hartingsveldt W, van Paridon PA, Veenstra AE, Luiten RGM, Selten GCM (1991) Cloning and expression of microbial phytase. EPA 0 420 358, EPA, Washington, D.C.

  29. Van Hartingsveldt W, van Zeijl CMJ, Harteveld GM, Gouka RJ, Suykerbuyk MEG, Luiten RGM, van Paridon PA, Selten GCM, Veenstra AE, van Gormon RFM, van den Hondel CAMJJ (1993) Cloning, characterisation and overexpression of the phytase-encoding gene (phyA) of Aspergillus niger. Gene 127:87–94

    PubMed  Google Scholar 

  30. Verwoerd TC, van Paridon PA, van Ooyen AJJ, van Lent JWM, Hoekema A, Pen J (1995) Stable accumulation of Aspergillus niger phytase in transgenic tobacco leaves. Plant Physiol 109:1199–1205

    Article  CAS  PubMed  Google Scholar 

  31. Vohra A, Satyanarayana T (2003) Phytases: microbial sources, production, purification and potential biotechnological applications. Crit Rev Biotechnol 23:29–60

    CAS  PubMed  Google Scholar 

  32. Ward PP, Piddington CS, Cunningham GA, Zhou X, Wyatt RD, Conneely OM (1995) A system for production of commercial quantities of human lactoferrin: a broad spectrum natural antibiotic. Biotechnology 13:498–503

    CAS  PubMed  Google Scholar 

  33. Wodzinski RJ, Ullah AHJ (1996) Phytase. Adv Appl Microbiol 42:263–302

    CAS  PubMed  Google Scholar 

  34. Wyss M, Pasamontes L, Remy R, Kohler J, Kusznir E, Gadient M, Muller F, van Loon APGM (1998) Comparison of the thermostability properties of three acid phosphatases from molds: Aspergillus fumigatus phytase, A. niger phytase and A. niger pH 2.5 acid phosphatase. Appl Environ Microbiol 64:4446–4451

    CAS  PubMed  Google Scholar 

  35. Wyss M, Brugger R, Kronenberger A, Remy R, Fimbel R, Oesterhelt G, Lehmann M, van Loon APGM (1999) Biochemical characterisation of fungal phytases (myo-inositol hexakisphosphate phosphohydrolases): catalytic properties. Appl Environ Microbiol 65:367–373

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The financial support of Alltech Inc. is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith A. Martin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, J.A., Murphy, R.A. & Power, R.F.G. Cloning and expression of fungal phytases in genetically modified strains of Aspergillus awamori . J IND MICROBIOL BIOTECHNOL 30, 568–576 (2003). https://doi.org/10.1007/s10295-003-0083-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-003-0083-8

Keywords

Navigation