Skip to main content
Log in

Development of cloning vectors and transformation methods for Amycolatopsis

  • Review Paper
  • Published:
Journal of Industrial Microbiology and Biotechnology

Abstract

The genus Amycolatopsis is of industrial importance, as its species are known to produce commercial antibiotics. It belongs to the family Pseudonocardiaceae and has an eventful taxonomic history. Initially strains were identified as Streptomyces, then later as Nocardia. However, based on biochemical, morphological and molecular features, the genus Amycolatopsis, containing seventeen species, was created. The development of molecular genetic techniques for this group has been slow. The scarcity of molecular genetic tools including stable plasmids, antibiotic resistance markers, transposons, reporter genes, cloning vectors, and high efficiency transformation protocols has made progress slow, but efforts in the past decade have led to the development of cloning vectors and transformation methods for these organisms. Some of the cloning vectors have broad host range (pRL series) whereas others have limited host range (pMEA300 and pMEA100). The cloning vector pMEA300 has been completely sequenced, while only the minimal replicon (pA-rep) has been sequenced from pRL plasmids. Direct transformation of mycelia and electroporation are the most widely applicable methods for transforming species of Amycolatopsis. Conjugational transfer from Escherichia coli has been reported only in the species A. japonicum, and gene disruption and replacements using homologous recombination are now possible in some strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. Alves AMCR, Meijer WG, Vrijbloed JW, Dijkhuizen L (1996) Characterization and phylogeny of the pfp gene of Amycolatopsis methanolica encoding pyrophosphate dependent phosphofructokinase. J Bacteriol 178:149–155

    CAS  PubMed  Google Scholar 

  2. August, PR, Tang, L, Yoon, YJ, Ning, S, Muller, R, Yu, TW, Taylor M, Hoffman D, Kim G, Zhang X, Hutchinson CR, Floss HG (1998) Biosynthesis of the ansamycin antibiotic rifamycin: deductions from the molecular analysis of the rif biosynthetic gene cluster for Amycolatopsis mediterranei S699. Chem Biol 5:69–79

    CAS  PubMed  Google Scholar 

  3. Baltz RH, Matsushima P (1983) Advances in protoplast fusion and transformation in Streptomyces. Exper Suppl 46:143–148

    CAS  Google Scholar 

  4. Barna JC, Williams DH (1984) The structure and mode of action of glycopeptide antibiotics of the vancomycin group. Annu Rev Microbiol 38:339–357

    Article  CAS  PubMed  Google Scholar 

  5. Bibb MJ, Ward JM, Hopwood DA (1978) Transformation of plasmid DNA into Streptomyces at high frequency. Nature 274:398–400

    PubMed  Google Scholar 

  6. Biermann M, Logan R, O'Brien K, Seno ET, Nagaraja R, Schoner BE (1992) Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces sp. Gene 116:43–49

    CAS  PubMed  Google Scholar 

  7. Chater KF, Hopwood DA, Kieser T, Thompson CJ (1982) Gene cloning in Streptomyces. Curr Topics Microbiol Immunol 96:69–95

    CAS  Google Scholar 

  8. De Boer L, Vrijbloed JW, Grobben G, Dijkhuizen, L (1989) Regulation of aromatic amino acid biosynthesis in the ribulose monophosphate cycle methylotroph Nocardia sp. 239. Arch Microbiol 152:319–325

    Google Scholar 

  9. Dijkhuizen L, Levering PR, De Vries GE (1993) The physiology and biochemistry of aerobic methanol-utilizing gram-negative and gram-positive bacteria. In: Atkinson T, Sherwood, RF (eds) Biotechnology handbooks. Methane and methanol-utilizers. Plenum , New York, pp149–181

  10. Goodfellow M, Brown AB, Cai J, Chun J, Collins MD (1997) Amycolatopsis japonicum sp.nov., an actinomycete producing (S,S)-N,N′-ethylenediaminedisuccinic acid. Syst Appl Microbio 20:78–84

    CAS  Google Scholar 

  11. Grund EC, Knorr C, Eichenlaub R (1990) Catabolism of benzoate and monohydroxylated benzoates by Amycolatopsis and Streptomyces spp. Appl Environ Microbiol 56:1459–1464

    CAS  PubMed  Google Scholar 

  12. Hektor HJ, Dijkhuzien L (1996) Mutational analysis of primary alcohol metabolism in the methylotrophic actinomycete Amycolatopsis methanolica. FEMS Microbiol Lett 144:73–79

    Article  CAS  Google Scholar 

  13. Hu Z, Huuzikler D, Hutchinson CR, Khosla C (1999) A host vector system for analysis and manipulation of rifamycin polyketide biosynthesis in Amycolatopsis mediterranei. Microbiology 145:2335–2341

    CAS  PubMed  Google Scholar 

  14. Ikuta N, Souza MB, Valencia FF, Castro ME, Schenberg AC, Pizzirani-Kleiner A, Astolfi-Filho S (1999) The α-amylase gene as a marker for gene cloning: direct screening of recombinant clones. Biotechnology 8:241–242

    Google Scholar 

  15. Kaur H, Cortes J, Leadlay P, Lal R (2001) Cloning and partial characterization of the presumptive rifamycin biosynthetic gene cluster from the actinomycete Amycolatopsis mediterranei DSM 46095. Microbiological Res 156:1–8

    Google Scholar 

  16. Khanna M, Dua M, Lal R (1998) Selection of suitable marker genes for the development of cloning vectors and electroporation in different strains of A. mediterranei. Microbiol Res 153:205–211

    CAS  PubMed  Google Scholar 

  17. Kieser T, Bibb MJ, Buttner MJ, Chater KF Hopwood DA (1991) Practical Streptomyces genetics, a laboratory manual 2000. John Innes Foundation, Norwich

  18. Kuhstoss S, Rao RN (1991) Analysis of the integration function of the streptomycete bacteriophage ϕC31. J Mol Biol 222:897–908

    CAS  PubMed  Google Scholar 

  19. Kumar CV, Coque JJR, Martin JF (1994) Efficient transformation of the cephamycin C producer Nocardia lactamdurans and development of shuttle and promoter-probe cloning vectors. Appl Environ Microbiol 60:4086–4093

    CAS  Google Scholar 

  20. Kumari R, Bala S, Dhingra G, Majumdar S, Lal S, Cullum J, Lal R (2003) Optimization of transformation protocol and development of a system for homologous recombinations in Amycolatopsis. J Biotech 2003. Submitted

  21. Lal R (1999) Cloning vector and a process for the preparation thereof. 1999 Patent US005985560A

  22. Lal R, Khanna R, Dhingra N, Khanna M, Lal S (1998) Development of an improved cloning vector and transformation system in Amycolatopsis mediterranei. J Antibiot 51:161–169

    PubMed  Google Scholar 

  23. Lal R, Kumari R, Kaur H, Khanna R, Dhingra N, Tuteja D (2000) Regulation of type I PKS gene clusters and their manipulations. Trends Biotechnol 18:264–274

    Article  CAS  PubMed  Google Scholar 

  24. Lal R, Lal S, Grund E, Eichenlaub R (1991) Construction of a hybrid plasmid capable of replication in Amycolatopsis mediterranei. Appl Environ Microbiol 57:665–671

    CAS  PubMed  Google Scholar 

  25. Lechevalier MP, Prauser H, Labeda DP, Ruan J-S (1986) Two new genera of nocardioform actinomycetes: Amycolata gen. nov. and Amycolatopsis gen. nov. Int J Syst Bacteriol 36: 29–37

    Google Scholar 

  26. Madoń J, Moretti P, Hütter R (1987) Site specific integration and excision of pMEA100 in Nocardia mediterranei. Mol Gen Genet 209: 257–264

    PubMed  Google Scholar 

  27. Madon J, Hütter R (1991) Transformation system for Amycolatopsis mediterranei: Direct transformation of mycelium with plasmid DNA. J Bacteriol 173: 6325–6331

    PubMed  Google Scholar 

  28. Martin JF (1995) A method of transformation of Nocardia. Patent WO 95/23844

  29. Matsumoto N, Tsuchida T, Sawa R, Iinuma H, Nakamura H, Naganawa H, Sawa T, Takeuchi T (1997) Epoxyquinomicins A, B, C and D, new antibiotics from Amycolatopsis. III. Physicochemical properties and structure determination. J. Antibiot 50:912–915

    CAS  Google Scholar 

  30. Matsushima P, Baltz RH (1985) Efficient plasmid transformation of Streptomyces ambofaciens and Streptomyces fradiae protoplasts. J Bacteriol 163:180–185.

    CAS  PubMed  Google Scholar 

  31. Matsushima P, McHenney MA, Baltz RH (1987) Efficient transformation of Amycolatopsis orientalis (Nocardia orientalis) protoplasts by streptomyces plasmids. J Bacteriol 169, 2298–2300

    Google Scholar 

  32. Mazodier P, Thompson C, Boccard F (1990) The chromosomal integration site of the Streptomyces element pSAM2 overlaps a putative tRNA gene conserved among actinomycetes. Mol Gen Genet 222:431–434

    CAS  PubMed  Google Scholar 

  33. Moretti P, Hintermann G, Hütter R (1985) Isolation and characterization of an extrachromosomal element from Nocardia mediterranei. Plasmid14:126–133

  34. Nadkarni SR, Patel MV, Chatterjee S, Vijay Kumar EKS, Desikan KR, Bhimbach J, Ganguli BN (1994) Balhimycin, a new glycopeptide antibitotic produced by Amycolatopsis sp. Y–86 21022. J Antibiot 47:334–341

    CAS  PubMed  Google Scholar 

  35. Pelzer S, Reichert W, Huppert M, Heckmann D, Wohlleben W (1997) Cloning and analysis of a peptide synthetase gene of the balhimycin producer Amycolatopsis mediterranei DSM 5908 and development of gene disruption/replacement system. J Biotechnol 56:115–128

    PubMed  Google Scholar 

  36. Priefert H, Achterholt S, Steinbuchel A (2002) Transformation of the Pseudonocardiaceae Amycolatopsis sp. strain HR167 is highly dependent on the physiological state of the cells. Appl Microbiol Biotechnol 58:454–460

    Article  CAS  PubMed  Google Scholar 

  37. Schupp T, Divers M (1986) Protoplast preparation and regeneration in A. mediterranei. FEMS Microbiol Lett 36:159–162

    Article  CAS  Google Scholar 

  38. Sensi P, Margalith P, Timbal MT (1959) Rifamycin, a new antibiotic: preliminary report. Farmaco Ed Sci 14:146–147

    CAS  Google Scholar 

  39. Shimanaka K, Kinoshita N, Iinuma H, Hamada M, Takeuchi T (1994) Novel antibiotics, amythiamycins. I. Taxonomy, fermentation, isolation, physico–chemical properties and antimicrobial activity. J Antibiot 47:668–674

    CAS  PubMed  Google Scholar 

  40. Stegmann E, Pelzer S, Wilken K, Wohlleben W (2001) Development of three different gene cloning systems for genetic investigation of the new species Amycolatopsis japonicum MG417–CF17, the ethylenediaminedisuccinic acid (EDDS) producer. J Biotechnol 92:195–204

    PubMed  Google Scholar 

  41. Thompson CJ, Ward JM, Hopwood DA (1982) Cloning of antibiotic resistance and nutritional genes in Streptomyces. J Bacteriol 151:668–677

    CAS  PubMed  Google Scholar 

  42. Tsuchida T, Iinuma H, Kinoshita N, Ikeda T, Sawa R, Takahashi Y, Naganawa H, Sawa T, Hamada M, Takeuchi T (1993) Azicemicin A, a new antimicrobial antibiotic from Amycolatopsis. J Antibiot:46:1772–1774

    Google Scholar 

  43. Tsuchida T, Sawa R, Takahashi Y, Iinuma H, Sawa T, Naganawa H, Takeuchi T (1995) Azicemicins A and B, new antimicrobial agents produced by Amycolatopsis. II. Structure determination. J Antibiot 48:1148–1152

    CAS  PubMed  Google Scholar 

  44. Tsuchida T, Umekita M, Kinoshita N, Iinuma H, Nakamura H, Nakamura K, Naganawa H, Sawa T, Hamada M, Takeuchi T(1996) Epoxyquinomicins A and B, new antibiotics from Amycolatopsis. J Antibiot 49:326–328

    CAS  PubMed  Google Scholar 

  45. Tuteja D, Dua M, Khanna R, Dhingra N, Khanna M, Kaur H, Saxena DM, Lal R (2000) The importance of homologous recombination in the generation of large deletions in hybrid plasmids in A. mediterranei. Plasmid 3:1–11

    Article  Google Scholar 

  46. Vrijbloed, J.W (1996) Functional analysis of the integrative plasmid pMEA 300 of the actinomycete Amycolatopsis methanolica. Ph.D thesis, Department of Microbiology, University of Groningen, Netherlands

  47. Vrijbloed JW, Hylckama VJ, Put van der NMJ, Hessels GI, Dijkhuizen L (1995c) Molecular cloning with a pMEA300 derived shuttle vector and characterization of the Amycolatopsis methanolica prephenate dehydratase gene. J Bacteriol 177:6666–6669

    CAS  PubMed  Google Scholar 

  48. Vrijbloed JW, Jelinkova M, Hessels GI, Dijkhuizen L (1995b) Identification of minimal replicon of plasmid pMEA300 of the methylotrophic actinomycete Amycolatopsis methanolica. Mol Microbiol 18:21–31

    CAS  PubMed  Google Scholar 

  49. Vrijbloed JW, Madoń J, Dijkhuizen L (1994) A plasmid from the methylotrophic actinomycete Amycolatopsis methanolica capable of site-specific integration. J Bacteriol 176:7087–7090

    CAS  PubMed  Google Scholar 

  50. Vrijbloed JW, Madoń J, Dijkhuizen L (1995a) Transformation of the methylotrophic actinomycete Amycolatopsis methanolica with plasmid DNA: stimulatory effect of a pMEA300 encoded gene. Plasmid 34:96–104

    PubMed  Google Scholar 

  51. Vujaklija D, Davies J (1995) Direct transfer of bacterial plasmid DNA between Streptomyces spp. and E. coli by electroduction. J Antibiot 48:635–637

    CAS  PubMed  Google Scholar 

  52. Wageningen AM van, Kirkpatric PN, Williams DH, Harris BR, Kershaw JK, Lennard NJ, Jones M, Jones SJ, Solenberg PJ (1998) Sequencing and analysis of genes involved in the biosynthesis of vancomycin group antibiotic. Chem Biol 5:155–162

    PubMed  Google Scholar 

  53. Wang NJ, Han BL, Yameshita N, Sato M (1994) 31-Homorifamycin W, a novel metabolite from Amycolatopsis mediterranei. J Antibiot 47:613–615

    CAS  PubMed  Google Scholar 

  54. Yamamoto H, Maures KH, Hutchinson CR (1986) Transformation of Streptomyces erythraeus. J Antibiot 39:1304–1313

    CAS  PubMed  Google Scholar 

  55. Yao W, Yang Y, Chiao J (1994) Cloning vector system for Nocardia spp. Curr Microbiol 29:223–227

    CAS  Google Scholar 

  56. Zhu B, Madoń J, Häusler A, Hütter R (1990) Amplification on the Amycolatopsis (Nocardia) mediteranei plasmid pMEA100: sequence similarities to actinomycete att sites. Plasmid 24:132–142

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The project was supported in part by grants from the Department of Science and Technology, Government of India. R. Kumari, Swati Majumdar, Shweta Malhotra and Poonam Sharma gratefully acknowledge the Council of Scientific and Industrial Research (CSIR), and the University Grants Commission (UGC), respectively, for providing doctoral fellowships. Rup Lal and John Cullum thank the Department of Science and Technology (Govt. of India) and the Deutsche Akademische Austauschdienst (DAAD), Germany, for support under the project-based personnel exchange programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rup Lal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dhingra, G., Kumari, R., Bala, S. et al. Development of cloning vectors and transformation methods for Amycolatopsis . J IND MICROBIOL BIOTECHNOL 30, 195–204 (2003). https://doi.org/10.1007/s10295-003-0040-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-003-0040-6

Keywords

Navigation