Skip to main content
Log in

ROTI-based statistical regression models for GNSS precise point positioning errors associated with ionospheric plasma irregularities

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

Global Navigation Satellite System (GNSS) signals are susceptible to ionospheric plasma irregularities and associated scintillations, causing large deviations in the positioning solutions. This study aims to develop statistical regression models to estimate kinematic three-dimensional (3D) precise point positioning errors associated with ionospheric plasma irregularities based on the Rate Of Total electron content Index (ROTI). By assuming that the positioning errors follow the Laplace distribution, we perform nonlinear regression using the Levenberg–Marquardt algorithm on a collection of experimental data from 700 + Trimble receivers deployed in the NOAA Continuously Operating Reference Stations (CORS) Network. Three ROTI-based regression models are identified by curve fitting with nonlinear functions, i.e., third-degree polynomial (Poly3), two-term exponential (Exp2) and two-term power (Power2) models. A goodness-of-fit test suggests the models fit well into the relationship between ROTI and the 3D positioning errors with the adjusted coefficient of determination above 0.97. The regression models are subsequently employed to predict the 3D positioning errors with a given set of ROTI. Evaluation analysis using the observations from four CORS networks across different geographical regions indicate that the Exp2 model demonstrates encouraging prediction performance, with bias and root mean square error within − 0.14 m and 0.34 m, respectively, and the correct prediction ratio consistently surpasses 60.3%. The ROTI-based regression models have great potential in predictions of the degradation in GNSS positioning due to ionospheric space weather effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The raw GNSS datasets are available from the NOAA's National Geodetic Survey (https://geodesy.noaa.gov/corsdata/), Brazilian Institute of Geography and Statistics (https://www.ibge.gov.br/en/geosciences/geodetic-positioning/geodetic-networks), EPN Central Bureau (https://epncb.oma.be/) and the data center of the Crustal Movement Observation Network of China. The IMF, solar wind, and geomagnetic index data are available from the NASA Space Physics Data Facility OMNIWeb data server (https://omniweb.gsfc.nasa.gov/) and the GFZ German Research Centre for Geosciences (https://www.gfz-potsdam.de/en/section/geomagnetism/data-products-services/). The RTKLIB (version 2.4.3 b34) can be accessed at this link (https://rtklib.com/).

References

  • Abdu MA (2019) Day-to-day and short-term variabilities in the equatorial plasma bubble/spread F irregularity seeding and development. Prog Earth Planet Sci 6(1):1–22

    Article  Google Scholar 

  • Afraimovich EL, Astafyeva EI, Demyanov VV, Gamayunov IF (2009) Mid-latitude amplitude scintillation of GPS signals and GPS performance slips. Adv Space Res 43:964–972

    Article  Google Scholar 

  • Aquino M, Moore T, Dodson A, Waugh S, Souter J, Rodrigues FS (2005) Implications of ionospheric scintillation for GNSS users in Northern Europe. J Navig 58(2):241–256

    Article  Google Scholar 

  • Balan N, Liu L, Le H (2018) A brief review of equatorial ionization anomaly and ionospheric irregularities. Earth Planet Phys 2(4):257–275

    Article  Google Scholar 

  • Borries C, Wilken V, Jacobsen KS, García-Rigo A, Dziak-Jankowska B, Kervalishvili G, Jakowski N, Tsagouri I, Hernández-Pajares M, Ferreira AA (2020) Assessment of the capabilities and applicability of ionospheric perturbation indices provided in Europe. Adv Space Res 66(3):546–562

    Article  Google Scholar 

  • Breitsch B, Morton YT, Rino C, Xu D (2020) GNSS carrier phase cycle slips due to diffractive ionosphere scintillation: simulation and characterization. IEEE Trans Aerosp Electron Syst 56(5):3632–3644

    Article  Google Scholar 

  • Chen W, Gao S, Hu C, Chen Y, Ding X (2008) Effects of ionospheric disturbances on GPS observation in low latitude area. GPS Solut 12(1):33–41

    Article  Google Scholar 

  • Cherniak I, Krankowski A, Zakharenkova I (2018) ROTI Maps: a new IGS ionospheric product characterizing the ionospheric irregularities occurrence. GPS Solut 22(3):1–12

    Article  Google Scholar 

  • Demyanov V, Yasyukevich Y, Sergeeva MA, Vesnin A (2022) Space weather impact on GNSS performance. Springer, New York

    Book  Google Scholar 

  • Demyanov VV, Sergeeva MA, Yasyukevich AS (2019) GNSS high-rate data and the efficiency of ionospheric scintillation indices. In: Satellites missions and technologies for geosciences, pp 1–19

  • Fabbro V, Jacobsen KS, Andalsvik YL, Rougerie S (2021) GNSS positioning error forecasting in the Arctic: ROTI and Precise Point Positioning error forecasting from solar wind measurements. J Space Weather Space Clim 11:43

    Article  Google Scholar 

  • Follestad A, Clausen L, Moen JI, Jacobsen KS (2021) Latitudinal, diurnal, and seasonal variations in the accuracy of an RTK positioning system and its relationship with ionospheric irregularities. Space Weather 19(6):e2020SW002625

    Article  Google Scholar 

  • Gavin HP (2019) The Levenberg–Marquardt algorithm for nonlinear least squares curve-fitting problems. Department of civil and environmental engineering, Duke University

  • Geisser S (1993) Predictive inference. CRC Press, Boca Raton

    Book  Google Scholar 

  • Guo K, Aquino M, Vadakke Veettil S (2019) Ionospheric scintillation intensity fading characteristics and GPS receiver tracking performance at low latitudes. GPS Solut 23:1–12

    Article  CAS  Google Scholar 

  • Jacobsen KS (2014) The impact of different sampling rates and calculation time intervals on ROTI values. J Space Weather Space Clim 4:A33

    Article  Google Scholar 

  • Jacobsen KS, Dähnn M (2014) Statistics of ionospheric disturbances and their correlation with GNSS positioning errors at high latitudes. J Space Weather Space Clim 4:A27

    Article  Google Scholar 

  • Jakowski N, Borries C, Wilken V (2012) Introducing a disturbance ionosphere index. Radio Sci 47(04):1–9

    Article  Google Scholar 

  • Jin Y, Moen JI, Oksavik K et al (2017) GPS scintillations associated with cusp dynamics and polar cap patches. J Space Weather Space Clim 7:A23

    Article  Google Scholar 

  • Juan JM, Sanz J, Rovira-Garcia A, González-Casado G, Ibáñez D, Perez RO (2018) AATR an ionospheric activity indicator specifically based on GNSS measurements. J Space Weather Space Clim 8:A14

    Article  Google Scholar 

  • Karch J (2020) Improving on adjusted R-squared. Collabra Psychol 6(1)

  • Kelley MC (2009) The Earth’s ionosphere: plasma physics and electrodynamics. Academic Press, Cambridge

    Google Scholar 

  • Kintner PM, Ledvina BM, De Paula E (2007) GPS and ionospheric scintillations. Space Weather 5(9)

  • Langley RB (1991) The mathematics of GPS. GPS World 2(7):45–50

    Google Scholar 

  • Li G, Ning B, Otsuka Y, Abdu MA, Abadi P, Liu Z, Spogli L, Wan W (2021) Challenges to equatorial plasma bubble and ionospheric scintillation short-term forecasting and future aspects in east and southeast Asia. Surv Geophys 42:201–238

    Article  CAS  Google Scholar 

  • Luo X, Du J, Galera Monico JF, Xiong C, Liu J, Liang X (2022) ROTI-based stochastic model to improve GNSS precise point positioning under severe geomagnetic storm activity. Space Weather 20(7):e2022SW003114

    Article  Google Scholar 

  • Moreno B, Radicella S, De Lacy MC, Herraiz M, Rodriguez-Caderot G (2011) On the effects of the ionospheric disturbances on precise point positioning at equatorial latitudes. GPS Solut 15(4):381–390

    Article  Google Scholar 

  • Morton YJ, Yang Z, Breitsch B, Bourne H, Rino C (2020) Ionospheric effects, monitoring, and mitigation techniques. In: Position, navigation, and timing technologies in the 21st century. Wiley, pp 879–937

  • Paziewski J, Høeg P, Sieradzki R, Jin Y, Jarmolowski W, Mainul M, Hoque JB, Hernandez-Pajares M, Wielgosz P, Lyu H (2022) The implications of ionospheric disturbances for precise GNSS positioning in Greenland. J Space Weather Space Clim 12:33

    Article  Google Scholar 

  • Pi X, Iijima BA, Lu W (2017) Effects of ionospheric scintillation on GNSS-based positioning. Navig J Inst Navig 64(1):3–22

    Article  Google Scholar 

  • Pi X, Mannucci AJ, Lindqwister UJ, Ho CM (1997) Monitoring of global ionospheric irregularities using the worldwide GPS network. Geophys Res Lett 24(18):2283–2286. https://doi.org/10.1029/97gl02273

    Article  CAS  Google Scholar 

  • Skone S, Knudsen K, De Jong M (2001) Limitations in GPS receiver tracking performance under ionospheric scintillation conditions. Phys Chem Earth Part Solid Earth Geod 26(6–8):613–621

    Article  Google Scholar 

  • Takasu T (2011) RTKLIB: an open source program package for GNSS positioning. http://www.rtklib.com. Accessed 11 Apr 2024

  • Van Dierendonck AJ, Klobuchar J, Hua Q (1993) Ionospheric scintillation monitoring using commercial single frequency C/A code receivers. In: Citeseer, pp 1333–1342

  • Van Diggen F (1999) Gps accuracy: lies, damn lies and statistics. GPS World 1:41

    Google Scholar 

  • Veettil SV, Cesaroni C, Aquino M, De Franceschi G, Berrili F, Rodriguez F, Spogli L, Del Moro D, Cristaldi A, Romano V (2019) The ionosphere prediction service prototype for GNSS users. J Space Weather Space Clim 9:A41

    Article  Google Scholar 

  • Veettil SV, Aquino M, De Franceschi G, Spogli L, Cesaroni C, Romano V (2018) Statistical models to provide meaningful information to GNSS end-users under ionospheric scintillation conditions, pp 3827–3832

  • Yang Z, Liu Z (2016) Correlation between ROTI and Ionospheric Scintillation Indices using Hong Kong low-latitude GPS data. GPS Solut 20(4):815–824. https://doi.org/10.1007/s10291-015-0492-y

    Article  Google Scholar 

  • Yang Z, Liu Z (2017) Investigating the inconsistency of ionospheric ROTI indices derived from GPS modernized L2C and legacy L2 P(Y) signals at low-latitude regions. GPS Solut 21(2):783–796. https://doi.org/10.1007/s10291-016-0568-3

    Article  Google Scholar 

  • Yang Z, Morton YJ (2020) Low-latitude GNSS ionospheric scintillation dependence on magnetic field orientation and impacts on positioning. J Geod 94(6):59

    Article  Google Scholar 

  • Yang Z, Morton YJ, Zakharenkova I, Cherniak I, Song S, Li W (2020a) Global view of ionospheric disturbance impacts on kinematic GPS positioning solutions during the 2015 St Patrick’s Day storm. J Geophys Res Space Phys 125(7):e2019JA027681

    Article  Google Scholar 

  • Yang Z, Mrak S, Morton YJ (2020b) Geomagnetic storm induced mid-latitude ionospheric plasma irregularities and their implications for GPS positioning over North America: a case study. In: IEEE, pp 234–238

  • Zakharenkova I, Cherniak I (2021) Effects of storm-induced equatorial plasma bubbles on GPS-based kinematic positioning at equatorial and middle latitudes during the September 7–8, 2017, geomagnetic storm. GPS Solut 25(4):132

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (42274027, 42225401), the Scientific and Technological Innovation Plan from Shanghai Science and Technology Committee (21511103902, 22511103003), the industrial Collaborative Innovation Project (Technology) of Shanghai Municipality (XTCX-KJ-2023-35, XTCX-KJ-2022-09), and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Contributions

Z.Y. contributed to initial idea of the research. H.Y.J. conducted regression modelling and data analysis. H.Y.J wrote the manuscript text. Z.Y and B.F.L. revised the writing. All authors reviewed the manuscript.

Corresponding author

Correspondence to Zhe Yang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, H., Yang, Z. & Li, B. ROTI-based statistical regression models for GNSS precise point positioning errors associated with ionospheric plasma irregularities. GPS Solut 28, 105 (2024). https://doi.org/10.1007/s10291-024-01648-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10291-024-01648-0

Keywords

Navigation