Skip to main content

Modified atmospheric pressure extrapolation model using ERA5 for geodetic applications

Abstract

Atmospheric pressure is a widely used meteorological parameter, and surface pressure at antenna height is one of the most important parameters for calculating the Global Navigation Satellite System (GNSS) tropospheric hydrostatic delay. The latter is responsible for about 90% of the total tropospheric delay, which is one of the main error sources in geodetic applications. For convenience, a standard pressure formula is commonly applied to extrapolate pressure at any height from mean sea level (MSL). The higher the antenna is, the greater the error introduced into the calculated pressure. We study the pattern between the reference pressure, interpolated from the pressure level dataset, and the pressure extrapolated from MSL by applying a standard method at the position of 320 globally distributed GNSS stations from the gridded fifth-generation European Center for Medium-range Weather Forecasts Reanalysis (ERA5) numerical dataset. We optimize the standard method by taking height and temperature into consideration and propose two modified models based on 17 years of data. The results from pressure comparison at different height intervals and respective validation for the year 2020 show that the two modified methods exhibit a 60% improvement relative to the standard method. Moreover, the precise point positioning (PPP) test in July 2020 shows a slight but global improvement in 3D coordinates and retrieved precipitable water vapor.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Data availability

The data that support the findings of this study are available on the ECMWF website (https://cds.climate.copernicus.eu/cdsapp#!/home).

References

  • Askne J, Nordius H (1987) Estimation of tropospheric delay for microwaves from surface weather data. Radio Sci 22(03):379–386

    Article  Google Scholar 

  • Berg H (1948) Allgemeine Meteorologie. Dümmler’s Verlag, Bonn

  • Böhm J, Niell A, Tregoning P, Schuh H (2006) Global mapping function (gmf): a new empirical mapping function based on numerical weather model data. Geophys Res Lett. https://doi.org/10.1029/2005GL025546

    Article  Google Scholar 

  • Böhm J, Heinkelmann R, Schuh H (2007) Short note: a global model of pressure and temperature for geodetic applications. J Geodesy 81(10):679–683

    Article  Google Scholar 

  • Böhm J, Möller G, Schindelegger M, Pain G, Weber R (2015) Development of an improved empirical model for slant delays in the troposphere (GPT2w). GPS Solut 19(3):433–441

    Article  Google Scholar 

  • Boisits J, Landskron D, Böhm J (2020) VMF3o: the Vienna mapping functions for optical frequencies. J Geodesy 94(6):1–11

    Article  Google Scholar 

  • Chen G, Herring T (1997) Effects of atmospheric azimuthal asymmetry on the analysis of space geodetic data. J Geophys Research: Solid Earth 102(B9):20489–20502

    Article  Google Scholar 

  • Chen B, Dai W, Liu Z, Wu L, Kuang C, Ao M (2018) Constructing a precipitable water vapor map from regional GNSS network observations without collocated meteorological data for weather forecasting. Atmos Meas Tech 11(9):5153–5166

    Article  Google Scholar 

  • Copernicus Climate Change Service (C3S) (2017): ERA5: Fifth generation of ECMWF atmospheric reanalysis of the global climate. Copernicus Climate Change Service Climate Data Store (CDS), https://cds.climate.copernicus.eu/cdsapp#!/home

  • Dach R, Lutz S, Walser P, Fridez P (2015) Bernese GNSS software version 5.2. Astronomical Institute, University of Bern

  • Dee DP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597

    Article  Google Scholar 

  • ECMWF (2011) The ERA-Interim reanalysis dataset, copernicus climate change service (C3S). European Centre for Medium-range Weather Forecast. https://www.ecmwf.int/en/forecasts/datasets/archive-datasets/reanalysis-datasets/era-interim

  • Emardson TR, Elgered G, Johansson JM (1998) Three months of continuous monitoring of atmospheric water vapor with a network of global positioning system receivers. J Geophys Res Atmos 103(D2):1807–1820

    Article  Google Scholar 

  • Feng P, Li F, Yan J, Zhang F, Barriot JP (2020) Assessment of the accuracy of the Saastamoinen model and VMF1/VMF3 mapping functions with respect to ray-tracing from radiosonde data in the framework of GNSS meteorology. Remote Sens 12(20):3337

    Article  Google Scholar 

  • Hofmeister A (2016) Determination of path delays in the atmosphere for geodetic VLBI by means of ray-tracing. Ph.D. thesis, Vienna University of Technology

  • Hopfield H (1969) Two-quartic tropospheric refractivity profile for correcting satellite data. J Geophys Res 74(18):4487–4499

    Article  Google Scholar 

  • King J (2003) Validation of ECMWF sea level pressure analyses over the Bellingshausen Sea Antarctica. Weather Forecast 18(3):536–540

    Article  Google Scholar 

  • King R, Bock Y (2005) Documentation for the GAMIT GPS processing software release 10.2. Mass. Inst. of Technol, Cambridge

  • Lagler K, Schindelegger M, Böhm J, Krásná H, Nilsson T (2013) GPT2: empirical slant delay model for radio space geodetic techniques. Geophys Res Lett 40(6):1069–1073

    Article  Google Scholar 

  • Landskron D, Böhm J (2018) VMF3/GPT3: redefined discrete and empirical troposphere mapping functions. J Geodesy 92(4):349–360

    Article  Google Scholar 

  • Mendes VB, Prates G, Santos L, Langley RB (2000) An evaluation of the accuracy of the accuracy of models for the determination of the weighted mean temperature of the atmosphere. In: Proceddings of the 2000 National Technical Meeting of the Institute of Navigation vol 2000, pp 433–438

  • Petit G, Luzum B (2010) IERS conventions (2010). Tech. rep., Bureau International des Poids et mesures sevres (France)

  • re3data.org (2020) VMF Data Server; editing status 2020–12–14; re3data.org - Registry of Research Data Repositories. Doi. https://doi.org/10.17616/R3RD2H

  • Rothacher M (2002) Estimation of station heights with GPS. In: Drewes H, Dodson AH, Fortes LPS, Sánchez L, Sandoval P (eds) Vertical reference systems. Springer, Berlin

    Google Scholar 

  • Saastamoinen J (1972) Atmospheric correction for the troposphere and stratosphere in radio ranging satellites. Artificial Satell Geodesy 15:247–251

    Google Scholar 

  • Schüler T (2001) On ground-based GPS tropospheric delay estimation. Ph.D thesis, Universtät der Bundeswehr München

  • Younes SAM (2016) Modeling investigation of wet tropospheric delay error and precipitable water vapor content in Egypt. Egypt J Remote Sens Sp Sci 19(2):333–342

    Google Scholar 

  • Yu L, Zhang Z, Zhou M, Zhong S, Lenschow D, Hsu Hm Wu H, Sun B (2010) Validation of ECMWF and NCEP-NCAR reanalysis data in Antarctica. Advances in Atmospheric Sciences 27(5): 1151–1168

  • Zhao Q, Yao Y, Yao W, Zhang S (2019) GNSS-derived PWV and comparison with radiosonde and ECMWF ERA-Interim data over mainland China. J Atmos Solar Terr Phys 182:85–92

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the financial support from the Youth Innovation Project of the National Time Service Center (NTSC), the Natural Science Foundation of Shaanxi Province (2021JQ-322), the National Nature Science Foundation of China (12073034, 12003041), and the West Light Foundation of the Chinese Academy of Sciences (XAB2018YDYL01, XAB2019A06). The authors thank C3S (2017) and the Crustal Dynamics Data Information System (CDDIS) for providing data used in this article and thank for the support from the international GNSS monitoring and assessment system (iGMAS), iGMAS analysis center at NTSC, and the National Space Science Data Center, National Science and Technology Infrastructure of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Su, H., Yang, T., Sun, B. et al. Modified atmospheric pressure extrapolation model using ERA5 for geodetic applications. GPS Solut 25, 118 (2021). https://doi.org/10.1007/s10291-021-01153-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10291-021-01153-8

Keywords

  • GNSS
  • ZHD
  • Atmospheric pressure
  • ERA5
  • PPP
  • PWV