Skip to main content
Log in

Past, present and future of atomic clocks for GNSS

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

Global Navigation Satellite Systems (GNSS) are enabled by atomic clocks, which provide the timing precision and accuracy required for the ranging measurements. Significant investments have been made and will continue to be made, to improve GNSS atomic clock technology and reduce the signal-in-space user range error. After providing a baseline by reviewing current GNSS satellite atomic clock technology, we discuss how far, and in what directions, atomic clock technology should be pushed to provide maximum benefits to GNSS performance, reliability and cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

source and getter pump. The vacuum envelope contains a buffer gas (helium or neon) at a very low pressure and 199Hg vapor

Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Allan DW, Weiss MA, Peppler TK (1989) In search of the best clock. IEEE Trans Instrum Meas 38:624–630

    Article  Google Scholar 

  • Arpesi P et al (2018) Development status of the Rb POP space clock for GNSS applications. In: Proceedings of the 2018 European frequency and time forum, IEEE Press, Piscataway, NJ, USA, pp 72–74

  • Bauch A (2003) Cesium atomic clocks: functions, performance and applications. Meas Sci Technol 14:1159–1173

    Article  Google Scholar 

  • Beard RL, Murray J, White JD (1986) GPS Clock Technology and the Navy PTTI Program at the US Naval Research Laboratory. In: Proceedings of the 18th annual precise time and time interval (PTTI) applications and planning meeting, pp 37–53

  • Belyaev A, Biriukov A, Demidov N, Likhacheva L, Medvedev S, Myasnikov A, Pavlenko Y, Sakharov B, Smirnov P, Storojev E, Tulyakov A (2013) Russian hydrogen maser for space applications. In: Proceedings of the 2013 precise time and time interval systems and applications meeting, Institute of navigation, Nashville, TN, USA, pp 87–93

  • Buell W, Jaduszliwer B (1999) Compact CW cold beam cesium atomic clock. In: Proceedings of the 1999 joint meeting of the european frequency and time forum and the IEEE international frequency control symposium, IEEE Press, Piscataway, NJ, USA, pp 85–87

  • Camparo JC, Frueholz RP, Dubin AP (1997) Precise time synchronization of two milstar communications satellites without ground intervention. Int J Satellite Commun 15:135–139

    Article  Google Scholar 

  • Camparo JC, Moss SC, LaLumondiere SD (2004) Space System Timekeeping in the Presence of Solar Flares. IEEE Aerosp Electron Syst Mag 19(5):3–8

    Article  Google Scholar 

  • Camparo JC (2007) The Rubidium atomic clock and basic research, Physics Today, November 2007, pp 33–39, American Institute of Physics, Washington

  • Camparo JC and Driskell TU (2015) The mercury-ion clock and the pulsed-laser rubidium clock: Near-term candidates for future GPS deployment, Aerospace Technical Report No. TOR-2015–03893

  • Cernigliaro A, Valloreia S, Galleani L, Tavella P (2013) GNSS Space Clocks: Performance Analysis. In: Proceedings of the 2013 international conference on localization and GNSS, IEEE Press, Piscataway, NJ, USA, pp 1–5

  • Cofield C (2020) NASA extends Deep Space Atomic Clock mission, Jet Propulsion Laboratory, California Institute of Technology, https://www.jpl.nasa.gov/news/news.php?feature=7687 Accessed 25 June 2020

  • Cutler, L.S., Giffard, R.P., McGuire, M.D. (1983) Mercury-199 trapped ion frequency standard: Recent theoretical progress and experimental results. In: Proceedings of the 37th annual symposium on frequency control, IEEE, Piscataway, NJ, USA, pp 32–36

  • Dicke RH (1953) The effect of collisions upon the Doppler width of spectral lines. Phys Rev 89:472–473

    Article  Google Scholar 

  • Diddams SA, Jones DJ, Ye J, Cundiff ST, Hall J, Ranka J, Windeler RS, Holzwarth R, Udem T, Hansch TW (2000) Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb. Phys Rev Lett 84:5102–5105

    Article  Google Scholar 

  • Droz F et al (2008) Galileo rubidium standard and passive hydrogen maser. In: DelRe E, Ruggieri M (eds) Satellite communications and navigation systems. Springer, New York, pp 133–139

    Chapter  Google Scholar 

  • Droz F, Rochat P, Boillat S., Scheidegger B (2015) GNSS RAFS latest improvements. In: Proceedings of the 2015 joint conference of the IEEE frequency control symposium and the European forum on frequency and time, IEEE Press, Piscataway, NJ, USA, pp 637–642

  • Dupuis RT, Lynch TJ, Vaccaro JR (2008) Rubidium frequency standard for the GPS IIF program and modification for the RAFSMOD program. In: Proceedings of the 2008 IEEE International frequency control symposium, IEEE Press, Piscataway, NJ, USA, pp 655–660

  • Formichella V, Camparo J, Tavella P (2017) Influence of the ac-Stark shift on GPS atomic clock timekeeping. Appl Phys Lett 110:043506

    Article  Google Scholar 

  • Heavner TP, Barlow S, Weiss MA, Ashby N, Jefferts SR (2011) A laser-cooled frequency standard for GPS. In: Proceedings of the ION ITM 2010, Institute of Navigation, Nashville, TN, USA, 2946-2949

  • Heng L, Gao GX, Walter T, Enge P (2012) Statistical characterization of GPS Signal-In-Space errors. In: Proceedings of the ION ITM 2011, Institute of navigation, Nashville, TN, USA, pp 312–319

  • Hoffman-Wellenhof B, Lichtenegger H, Collins J (1993) Overview of GPS. GPS theory and practice, vol 2. Springer, New York, pp 13–22

    Google Scholar 

  • Jaduszliwer B, Huang M, Camparo J (2015) Buffer gas consumption in rubidium discharge lamps. In: Proceedings of the 2015 joint conference of the IEEE international frequency control symposium and the European frequency and time forum, IEEE, Piscataway, NJ, USA, pp 37–46

  • Kasevich MA, Riis E, Chu S, DeVoe RG (1989) RF spectroscopy in an atomic fountain. Phys Rev Lett 63:612–615

    Article  Google Scholar 

  • Kastler A (1957) Optical methods of atomic orientation and of magnetic resonance. J Opt Soc Am 47:255–265

    Article  Google Scholar 

  • Kleppner D, Berg HC, Crampton SB, Ramsey NF, Vessot RFC, Peters HE, Vanier J (1965) Hydrogen-maser principles and techniques. Phys Rev A138:972–983

    Article  Google Scholar 

  • LaLumondiere SD, Moss SC, Camparo JC (2003) A “space experiment” examining the response of a geosynchronous quartz crystal oscillator to various levels of solar activity. IEEE Trans Ultrason Ferroelectr Freq Control 50:210–213

    Article  Google Scholar 

  • Lemke ND, Phelps G, Burke JH, Martin K, Bigelow MS (2017) The optical rubidium atomic frequency standard at AFRL. In: Proceedings of the 2017 joint conference of the european frequency and time forum and the IEEE international frequency control symposium, IEEE, Piscataway, NJ, USA, pp 466-467

  • Lemonde P et al (1997) A space clock prototype using cold cesium atoms. In: Proceedings of the 1997 IEEE International frequency control symposium, IEEE, Piscataway, NJ, USA, pp 213-218

  • Levi F, Calosso CE, Godone A, Micalizio S (2013) Pulsed optically pumped Rb clock: a high stability vapor cell frequency standard. In: Proceedings of the 2013 joint conference of the IEEE international frequency control symposium and the European frequency and time forum, IEEE, Piscataway, NJ, USA, pp 599–605

  • Li J, Zhang J, Bu Y, Cao C, Wang W, Zheng H (2016) Space Passive Hydrogen maser: a passive hydrogen maser for space applications. Proc. 2016 IEEE International frequency control symposium, IEEE press, Piscataway, NJ, USA, pp 1–5

  • Liu H, Chen Y, Yan B, Liu G, She L (2020) Progress towards a miniaturized mercury ion clock for space application. In: Sui J, Xie J (eds) China satellite navigation conference (CNSC) 2020 Proceedings, Vol II, pp 557–561

  • Liu L et al (2018) In-orbit operation of an atomic clock based on laser-cooled 87Rb atoms. Nat Commun 9:2760

    Article  Google Scholar 

  • Lutwak R, Emmons D, Garvey RM, Vlitas P (2001) Optically pumped cesium-beam frequency standard for GPS-III. In: Proceedings og the 33rd annual precise time and time interval (PTTI) Meeting, pp 19–32

  • Lv Y, Geng T, Zhao Q, Liu J (2018) Characteristics of BeiDou experimental satellite clocks. Remote Sensing 10:1847–1859

    Article  Google Scholar 

  • Maciuk K (2019) Monitoring of Galileo on-board oscillators variations, disturbances and noises. Measurement 147:106843–106849

    Article  Google Scholar 

  • Major FG (1998) The quantum beat: the physical principles of atomic clocks. Springer, New York

    Book  Google Scholar 

  • Mei G, Zhong D, An S, Zhao F, Qi F, Wang F, Ming G, Li W, Wang P (2016) Main features of space rubidium atomic frequency standard for beidou satellites. In: Proceedings 2016 European frequency and time forum (EFTF), pp 1–4

  • Millerioux Y, Touhari D, Hilico L, Clairon A, Felder R, Biraben F, de Beauvoir B (1994) Towards an accurate frequency standard at λ = 778 nm using a laser diode stabilized on a hyperfine component of the Doppler-free two-photon transitions in rubidium. Opt Commun 108:91–96

    Article  Google Scholar 

  • Montenbruck O, Steinberger P, Hauschild A (2020) Comparing the ‘Big 4’—A user’s view on GNSS performance. In: Proceedings of the IEEE/ION PLAN 2020, Institute of Navigation, Nashville, TN, USA, to be published

  • Paul W, Osberghaus O, Fischer E (1958) Ein Ionenkäfig. Forschungsberichte des Wirtschafts- und Verkehrsministerium Nordrhein-Westfalen Nr 415, Westdeuscher Verlag, Cologne

  • Phelps G, Lemke N, Erickson C, Burke J (2018) Compact optical clock with 5×10−13 instability at 1 s. Navigation 65:49–54

    Article  Google Scholar 

  • Prestage JD, Dick GJ, Maleki L (1989) New ion trap for frequency standard applications. J Appl Phys 66:1013–1017

    Article  Google Scholar 

  • Ramsey NF (1956) Molecular beams. Oxford University Press, Oxford

    Google Scholar 

  • Revnivykh I (2016) GLONASS Programme update. 11th Meeting of the International Committee on Global Navigation Satellite System

  • Riley WJ (2008) Time domain stability. Handbook of frequency stability analysis, NIST special publication 1065. US Government Printing Office, Washington DC, pp 9–66

    Google Scholar 

  • Rochat P (2016) Latest Evolutions on clocks & on board timing. Spectratime presentation at the Galileo Evolution Industry Days, ESA-ESTEC Noordwijk, the Netherlands, 24–25 May 2016

  • Schmeissner R et al (2017) Optically pumped Cs space clock development. In: Proceedings of the 2017 Annual IEEE frequency control symposium, IEEE, Piscataway, NJ, USA, pp 136-137

  • Shen Q, Lin H, Deng J, Wang Y (2020) Optically pumped atomic clock with a medium to long-term frequency stability of 10–15. Rev Sci Instrum 91:045114

    Article  Google Scholar 

  • Sinclair LC, Deschenes JD, Sonderhause L, Swann WC, Khader IH, Baumann E, Newbury NR, Coddington I (2015) A compact optically-coherent fiber frequency comb. Rev Sci Instrum 86:081301

    Article  Google Scholar 

  • Tjoelker RL, Burt EA, Chung S, Hamell RL, Prestage JD, Tucker B, Cash, P, Lutwak R (2011) Mercury atomic frequency standards for space based navigation and timekeeping. In: Proceedings of the 2011 Precise Time and Time Interval (PTTI) Systems and Applications Meeting, pp 293–303

  • Tjoelker RL et al (2016) Mercury ion clock for a NASA technology demonstration mission. IEEE Trans Ultrason Ferroelectr Freq Control 63:1034–1043

    Article  Google Scholar 

  • Vannicola F, Beard R, White J, Senior K, Largay M and Buisson J (2010) GPS Block IIF atomic frequency standard analysis. In: Proceedings of the 42nd annual precise time and time interval (PTTI) systems and applications meeting, Institute of Navigation, Nashville, TN, USA, pp. 181–195

  • Volk CM, Frueholz RP, English TC, Lynch TJ, Riley WJ (1984) Lifetime and reliability of rubidium discharge lamps for use in atomic frequency standards. In: Proceedings of the 38th Annual Frequency Control Symposium, IEEE Press, Piscataway, NJ, USA, pp 387–400

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Camparo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaduszliwer, B., Camparo, J. Past, present and future of atomic clocks for GNSS. GPS Solut 25, 27 (2021). https://doi.org/10.1007/s10291-020-01059-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10291-020-01059-x

Keywords

Navigation