PPPLib: An open-source software for precise point positioning using GPS, BeiDou, Galileo, GLONASS, and QZSS with multi-frequency observations


Precise Point Positioning Library (PPPLib) is a multi-GNSS data processing software designed to process multi-frequency data from GPS, BeiDou, Galileo, GLONASS, and QZSS. PPPLib is written in the C/C++ programming language. It can compile and run on both Linux and Windows operating systems. PPPLib mainly performs precise point positioning from single to triple frequency based on either ionospheric-free or uncombined observations. Moreover, it solves for abundant parameters, including position, tropospheric delay, ionospheric delay, and ambiguity information. Useful scripts and visualization tools are also provided for data download, batch processing, or solution presentation. We give a preliminary review, including positioning accuracy and convergence time of PPP using dual-frequency, ionospheric-free from single system to multi-GNSS, to show the working status of the current version of the software. In addition, the software also supports post-processing kinematic mode and INS/GNSS loosely coupled mode for kinematic positioning.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data Availability

All data and material supporting the conclusions of this article are available. They are either deposited in publicly available repositories or presented in the related paper.


  1. Bahadur B, Nohutcu M (2018) PPPH: a MATLAB-based software for multi-GNSS precise point positioning analysis. GPS Solut 22:113. https://doi.org/10.1007/s10291-018-0777-z

    Article  Google Scholar 

  2. Blewitt G (1990) An automatic editing algorithm for GPS data. Geophys Res Lett 17:199–202. https://doi.org/10.1029/GL017i003p00199

    Article  Google Scholar 

  3. Böhm J, Niell A, Tregoning P, Schuh H (2006) Global Mapping Function (GMF): a new empirical mapping function based on numerical weather model data. Geophys Res Lett 33:L07304. https://doi.org/10.1029/2005GL025546

    Article  Google Scholar 

  4. Chang G, Xu T, Yao Y, Wang Q (2018) Adaptive Kalman filter based on variance component estimation for the prediction of ionospheric delay in aiding the cycle slip repair of GNSS triple-frequency signals. J Geod 92:1241–1253. https://doi.org/10.1007/s00190-018-1116-4

    Article  Google Scholar 

  5. Gao Y, Shen X (2002) A new method for carrier-phase-based precise point positioning. J Navig 49:109–116. https://doi.org/10.1002/j.2161-4296.2002.tb00260.x

    Article  Google Scholar 

  6. Guo J, Zhang X, Zhao Q, Liu J (2015) Precise orbit determination for quad-constellation satellites at Wuhan University: strategy, result validation, and comparison. J Geod 90:143–159. https://doi.org/10.1007/s00190-015-0862-9

    Article  Google Scholar 

  7. Hatch R (1982) The synergism of GPS code and carrier measurements. Proc Third Int Symp Satell Doppler Position Phys Sci Lab N M State Univ 2:1213–1231

    Google Scholar 

  8. Li M, Nie W, Xu T, Rovira-Garcia A, Fang Z, Xu G (2020) Helmert variance component estimation for multi-gnss relative positioning. Sensors 20:669. https://doi.org/10.3390/s20030669

    Article  Google Scholar 

  9. Li P, Jiang X, Zhang X, Ge M, Schuh H (2020) GPS + Galileo + BeiDou precise point positioning with triple-frequency ambiguity resolution. GPS Solut 24:78. https://doi.org/10.1007/s10291-020-00992-1

    Article  Google Scholar 

  10. Li P, Zhang X (2014) Integrating GPS and GLONASS to accelerate convergence and initialization times of precise point positioning. GPS Solut 18:461–471. https://doi.org/10.1007/s10291-013-0345-5

    Article  Google Scholar 

  11. Lou Y, Zheng F, Gu S, Wang C, Guo H, Feng Y (2015) Multi-GNSS precise point positioning with raw single-frequency and dual-frequency measurement models. GPS Solut 20:849–862. https://doi.org/10.1007/s10291-015-0495-8

    Article  Google Scholar 

  12. Malys S, Jensen PA (1990) Geodetic point positioning with GPS carrier beat phase data from the CASA UNO experiment. Geophys Res Lett 17:651–654. https://doi.org/10.1029/GL017i005p00651

    Article  Google Scholar 

  13. Pan L, Zhang X, Li X, Liu J, Guo F, Yuan Y (2018) GPS inter-frequency clock bias modeling and prediction for real-time precise point positioning. GPS Solut 22:76. https://doi.org/10.1007/s10291-018-0741-y

    Article  Google Scholar 

  14. Saastamoinen J, (1972) Contributions to the theory of atmospheric refraction. Bull Geod 105:279–298. https://doi.org/10.1007/BF02521844

    Article  Google Scholar 

  15. Takasu T, Yasuda A (2009) A development of the low-cost RTK-GPS receiver with an open source program package RTKLIB. International symposium on GPS/GNSS, Seogwiposi Jungmundong, Korea, 4–6 November

  16. Tu R, Liu J, Zhang R, Zhang P, Huang X, Lu X (2019) RTK model and positioning performance analysis using Galileo four-frequency observations. Adv Space Res 63:913–926. https://doi.org/10.1016/j.asr.2018.10.011

    Article  Google Scholar 

  17. Wang K, Chen P, Zaminpardaz S, Teunissen PJ (2019) Precise regional L5 positioning with IRNSS and QZSS: stand-alone and combined. GPS Solut 23:10. https://doi.org/10.1007/s10291-018-0800-4

    Article  Google Scholar 

  18. Xiao G, Liu G, Ou J, Liu G, Wang S, Guo A (2020) MG-APP: an open-source software for multi-GNSS precise point positioning and application analysis. GPS Solut 22:66. https://doi.org/10.1007/s10291-020-00976-1

    Article  Google Scholar 

  19. Yang Y, Gao W, Guo S, Mao Y, Yang Y (2019) Introduction to BeiDou-3 navigation satellite system. J Navig 66:7–18. https://doi.org/10.1002/navi.291

    Article  Google Scholar 

  20. Yang Y, He H, Xu G (2001) Adaptively robust filtering for kinematic geodetic positioning. J Goed 75:109–116. https://doi.org/10.1007/s001900000157

    Article  Google Scholar 

  21. Yang Y, Mao Y, Sun B (2020) Basic performance and future developments of BeiDou global navigation satellite system. Satell Navig 1:1–8. https://doi.org/10.1186/s43020-019-0006-0

    Article  Google Scholar 

  22. Yang Y, Xu T, Song L (2005) Robust estimation of variance components with application in global positioning system network adjustment. J Surv Eng 131:107–112. https://doi.org/10.1061/(ASCE)0733-9453(2005)131:4(107)

    Article  Google Scholar 

  23. Zaminpardaz S, Teunissen PJ, Nadarajah N (2017) GLONASS CDMA L3 ambiguity resolution and positioning. GPS Solut 21:535–549. https://doi.org/10.1007/s10291-016-0544-y

    Article  Google Scholar 

  24. Zhou F, Dong D, Li W, Jiang X, Wickert J, Schuh H (2018) GAMP: an open-source software of multi-GNSS precise point positioning using undifferenced and uncombined observations. GPS Solut 22:19. https://doi.org/10.1007/s10291-018-0699-9

    Article  Google Scholar 

  25. Zumberge J, Heflin M, Jefferson D, Watkins M, Webb F (1997) Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res Solid Earth 102:5005–5017. https://doi.org/10.1029/96JB03860

    Article  Google Scholar 

Download references


This study was supported by “the Fundamental Research Funds for the Central Universities (Grant No. 2019BSCX25).”

Author information



Corresponding author

Correspondence to Guobin Chang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The GPS Tool Box is a column dedicated to highlighting algorithms and source code utilized by GPS engineers and scientists. If you have an interesting program or software package you would like to share with our readers, please pass it along; e-mail it to us at gpstoolbox@ngs.noaa.gov. To comment on any of the source code discussed here, or to download source code, visit our website at http://www.ngs.noaa.gov/gps-toolbox. This column is edited by Stephen Hilla, National Geodetic Survey, NOAA, Silver Spring, Maryland, and Mike Craymer, Geodetic Survey Division, Natural Resources Canada, Ottawa, Ontario, Canada.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Chang, G. PPPLib: An open-source software for precise point positioning using GPS, BeiDou, Galileo, GLONASS, and QZSS with multi-frequency observations. GPS Solut 25, 18 (2021). https://doi.org/10.1007/s10291-020-01052-4

Download citation


  • GNSS
  • Precise point positioning (PPP)
  • Multi-frequency
  • Open-source