Skip to main content
Log in

Single-frequency precise point positioning (PPP) for retrieving ionospheric TEC from BDS B1 data

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

The customary approach to determine ionospheric total electron content (TEC) with BeiDou navigations satellite system (BDS) data normally requires dual-frequency (DF) data provided by geodetic-grade receivers. In this study, we present an analysis of the performance of a new TEC estimation procedure based on single-frequency (SF) BDS data. First, the ionospheric observable is retrieved from the SF BDS code and phase data using precise point positioning (PPP) instead of the carrier-to-code leveling (CCL) technique used in the customary DF method. Then, the absolute ionospheric slant TEC (STEC) values are isolated from the ionospheric observables by modeling the ionospheric observable with the adjusted spherical harmonic (ASH) expansion and constraining the satellite differential code bias (SDCB) to very precise values provided externally. The experimental data were taken from the multi-GNSS experiment (MGEX) network for high and low sunspot periods, covering the 2 months, i.e., December 2014 and September 2017. The TEC data obtained from the combined final global ionospheric map (GIM) provided by the international GNSS service (IGS), the JASON DF altimeter, and the BDS-measured differential STEC (dSTEC) are used as reference data to evaluate the performance of the TEC values estimated by the proposed method. The evaluation results indicate that compared to the reference TEC data, the ionospheric TEC estimated by the proposed method using BDS B1 data and the customary CCL-based DF method based on BDS B1 + B2 data, perform at roughly equal levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Brunini C, Azpilicueta FJ (2009) Accuracy assessment of the GPS-based slant total electron content. J Geod 83(8):773–785

    Article  Google Scholar 

  • Brunini C, Azpilicueta F (2010) GPS slant total electron content accuracy using the single layer model under different geomagnetic regions and ionospheric conditions. J Geod 84(5):293–304

    Article  Google Scholar 

  • Brunini C, Meza A, Bosch W (2005) Temporal and spatial variability of the bias between TOPEX-and GPS-derived total electron content. J Geod 79(4–5):175–188

    Article  Google Scholar 

  • Ciraolo L, Azpilicueta F, Brunini C, Meza A, Radicella S (2007) Calibration errors on experimental slant total electron content (TEC) determined with GPS. J Geod 81(2):111–120

    Article  Google Scholar 

  • Feltens J, Schaer S (1998) IGS Products for the Ionosphere, IGS Position Paper. In: Proceedings of the IGS analysis centers workshop, ESOC, Darmstadt, Germany, February 9–11, pp 225–232

  • Feltens J, Angling M, Jackson-Booth N, Jakowski N, Hoque M, Hernández-Pajares M, Aragón-Àngel A, Orús R, Zandbergen R (2011) Comparative testing of four ionospheric models driven with GPS measurements. Radio Sci 46 (RS0D2):1–11

    Article  Google Scholar 

  • Guo J, Xu X, Zhao Q, Liu J (2016) Precise orbit determination for quad-constellation satellites at Wuhan University: Strategy, result validation, and comparison. J Geod 90(2):143–159

    Article  Google Scholar 

  • Hernandez-Pajares M, Juan JM, Sanz J (1999) New approaches in global ionospheric determination using ground GPS data. J Atmos Sol Terr Phys 61(16):1237–1247

    Article  Google Scholar 

  • Hernandez-Pajares M, Miguel Juan J, Sanz J, Aragon-Angel A, Garcia-Rigo A, Salazar D, Escudero M (2011) The ionosphere: effects, GPS modeling and the benefits for space geodetic techniques. J Geod 85(12):887–907

    Article  Google Scholar 

  • Hernández-Pajares M, Juan JM, Sanz J, Orus R, Garcia-Rigo A, Feltens J, Komjathy A, Schaer SC, Krankowski A (2009) The IGS VTEC maps: a reliable source of ionospheric information since 1998. J Geod 83(3–4):263–275

    Article  Google Scholar 

  • Hernández-Pajares M, Roma-Dollase D, Krankowski A, García-Rigo A, Orús-Pérez R (2017) Methodology and consistency of slant and vertical assessments for ionospheric electron content models. J Geod 91(12):1405–1414

    Article  Google Scholar 

  • Jee G, Lee HB, Kim YH, Chung JK, Cho J (2010) Assessment of GPS global ionosphere maps (GIM) by comparison between CODE GIM and TOPEX/Jason TEC data: Ionospheric perspective. J Geophys Res Space Phys 115(A10319):1–11

    Google Scholar 

  • Komjathy A, Sparks L, Wilson BD, Mannucci AJ (2005) Automated daily processing of more than 1000 ground-based GPS receivers for studying intense ionospheric storms. Radio Sci 40(RS6006):1–7

    Google Scholar 

  • Krankowski A, Kosek W, Baran L, Popinski W (2005) Wavelet analysis and forecasting of VTEC obtained with GPS observations over European latitudes. J Atmos Sol Terr Phy 67(12):1147–1156

    Article  Google Scholar 

  • Leick A, Rapoport L, Tatarnikov D (2015) GPS satellite surveying, 4th edn. Wiley, New York

    Google Scholar 

  • Li W, Cheng P, Bei J, Wen H, Wang H (2012) Calibration of regional ionospheric delay with uncombined precise point positioning and accuracy assessment. J Earth Syst Sci 121(4):989–999

    Article  Google Scholar 

  • Li M, Yuan YB, Wang NB, Li ZS, Li Y, Huo XL (2017a) Estimation and analysis of Galileo differential code biases. J Geod 91(3):279–293

    Article  Google Scholar 

  • Li W, Nadarajah N, Teunissen PJG, Khodabandeh A, Chai YJ (2017b) Array-Aided Single-Frequency State-Space RTK with Combined GPS, Galileo, IRNSS, and QZSS L5/E5a Observations. J Surv Eng 143(4):04017006

    Article  Google Scholar 

  • Li M, Yuan Y, Zhang B, Wang N, Li Z, Liu X, Zhang X (2018a) Determination of the optimized single-layer ionospheric height for electron content measurements over China. J Geod 92(2):169–183

    Article  Google Scholar 

  • Li M, Yuan Y, Wang N, Liu T, Chen Y (2018b) Estimation and analysis of the short-term variations of multi-GNSS receiver differential code biases using global ionosphere maps. J Geod 92(8):889–903

    Article  Google Scholar 

  • Liu T, Yuan Y, Zhang B, Wang N, Tan B, Chen Y (2016) Multi-GNSS precise point positioning (MGPPP) using raw observations. J Geod 91(3):253–268

    Article  Google Scholar 

  • Liu T, Zhang B, Yuan Y, Li M (2018) Real-Time Precise Point Positioning (RTPPP) with raw observations and its application in real-time regional ionospheric VTEC modeling. J Geod 92(11):1267–1283

    Article  Google Scholar 

  • Mannucci AJ, Wilson BD, Yuan DN, Ho CH, Lindqwister UJ, Runge TF (1998) A global mapping technique for GPS-derived ionospheric total electron content measurements. Radio Sci 33(3):565–582

    Article  Google Scholar 

  • Montenbruck O, Steigenberger P (2013) The BeiDou navigation message. J Glob Position Syst 12(1):1–12

    Article  Google Scholar 

  • Montenbruck O, Hauschild A, Steigenberger P (2014) Differential code bias estimation using Multi-GNSS observations and global ionosphere maps. Navigation 61(3):191–201

    Article  Google Scholar 

  • Odijk D, Zhang B, Khodabandeh A, Odolinski R, Teunissen PJ (2016) On the estimability of parameters in undifferenced, uncombined GNSS network and PPP-RTK user models by means of S-system theory. J Geod 90(1):15–44

    Article  Google Scholar 

  • Orus R, Cander LR, Hernandez-Pajares M (2007) Testing regional vertical total electron content maps over Europe during the 17–21 January 2005 sudden space weather event. Radio Sci 42(RS3002):1–12

    Google Scholar 

  • Schaer S (1999) Mapping and Predicting the Earth’s Ionosphere Using the Global Positioning System. Doctoral dissertation, Univ. Bern, Switzerland

  • Schueler T, Oladipo OA (2014) Single-frequency single-site VTEC retrieval using the NeQuick2 ray tracer for obliquity factor determination. GPS Solut 18(1):115–122

    Article  Google Scholar 

  • Schueler T, Oladipo OA (2013) Single-frequency GNSS retrieval of vertical total electron content (VTEC) with GPS L1 and Galileo E5 measurements. J Space Weather Space Clim 3:(A11)

    Article  Google Scholar 

  • Shu B, Liu H, Xu L, Gong X, Qian C, Zhang M, Zhang R (2016) Analysis of satellite-induced factors affecting the accuracy of the BDS satellite differential code bias. GPS Sol 21(3):905–916

    Article  Google Scholar 

  • Wang N, Yuan Y, Li Z, Huo X (2016a) Improvement of Klobuchar model for GNSS single-frequency ionospheric delay corrections. Adv Space Res 57(7):1555–1569

    Article  Google Scholar 

  • Wang N, Yuan Y, Li Z, Montenbruck O, Tan B (2016b) Determination of differential code biases with multi-GNSS observations. J Geod 90(3):209–228

    Article  Google Scholar 

  • Wang N, Yuan Y, Li Z, Li Y, Huo X, Li M (2017) An examination of the Galileo NeQuick model: comparison with GPS and JASON TEC. GPS Solut 21(2):605–615

    Article  Google Scholar 

  • Wu S, Peck S, Schempp T, Shloss P, Wan H, Buckner P, Doherty P, Angus J (2006) A single frequency approach to mitigation of ionospheric depletion events for SBAS in equatorial regions. In: Proc. ION GNSS 2006, Institute of Navigation, Fort Worth, Texas USA, September 26–29, pp 939–952

  • Yuan Y, Ou J (2001) An improvement to ionospheric delay correction for single-frequency GPS users—the APR-I scheme. J Geod 75(5–6):331–336

    Article  Google Scholar 

  • Yuan Y, Li Z, Wang N, Zhang B, Li H, Li M, Huo X, Ou J (2015) Monitoring the ionosphere based on the Crustal Movement Observation Network of China. Geodesy Geodyn 6(2):73–80

    Article  Google Scholar 

  • Zhang B (2016) Three methods to retrieve slant total electron content measurements from ground-based GPS receivers and performance assessment. Radio Sci 51(7):972–988

    Article  Google Scholar 

  • Zhang BC, Ou JK, Yuan YB, Li ZS (2012) Extraction of line-of-sight ionospheric observables from GPS data using precise point positioning. Sci China-Earth Sci 55(11):1919–1928

    Article  Google Scholar 

  • Zhang B, Teunissen PJG, Yuan Y, Zhang H, Li M (2017) Joint estimation of vertical total electron content (VTEC) and satellite differential code biases (SDCBs) using low-cost receivers. J Geod 92(4):401–413

    Article  Google Scholar 

Download references

Acknowledgements

Many thanks are due to the IGS for providing access to the Multi-GNSS Experiment (MGEX) data, the ionospheric GIM products, and the differential code bias (DCB) products. This work was supported by the National Key Research Program of China “Collaborative Precision Positioning Project” (No. 2016YFB0501900) and China Natural Science Funds (41604031, 41774042 and 41621091). The second author is supported by the CAS Pioneer Hundred Talents Program. The third author is supported by LU JIAXI International team program supported by the K.C. Wong Education Foundation and CAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baocheng Zhang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Zhang, B., Yuan, Y. et al. Single-frequency precise point positioning (PPP) for retrieving ionospheric TEC from BDS B1 data. GPS Solut 23, 18 (2019). https://doi.org/10.1007/s10291-018-0810-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10291-018-0810-2

Keywords

Navigation