Skip to main content
Log in

Ionospheric deformation of broadband GNSS signals and its analysis with a high gain antenna

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

The ionospheric delay of global navigation satellite systems (GNSS) signals typically is compensated by adding a correction value to the pseudorange measurement. We examine the ionospheric signal distortion beyond a constant delay. These effects become increasingly significant with increasing signal bandwidth and hence more critical for the new broadband navigation signals. By simulation, we first demonstrate that the signal modulation constellation diagram is particularly susceptible to the influence of the ionosphere already at moderate electron content. Using high gain antenna measurements of the Galileo E5 signal, we then verify that the expected influence can indeed be observed and compensated. A new method based on a binned maximum likelihood estimator is derived to estimate the total electron content (TEC) from a single frequency high gain antenna measurement of a broadband GNSS signal. Results of the estimation process are presented and discussed comparing to common TEC products such as TEC maps and dual-frequency receiver estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Cowan G (1998) Statistical data analysis. Clarendon Press, Oxford

    Google Scholar 

  • European GNSS (Galileo) Open Service (2015) Ionospheric correction algorithm for Galileo single frequency users. Technical report

  • Gao GX, Datta-Barua S, Walter T, Enge P (2007) Ionosphere effects for wideband GNSS signals. In: Proceedings of ION ATM, Institute of Navigation, April 23–25, Cambridge, MA, USA, pp 147–155

  • Garbuny M (1965) Optical physics. Acadamic Press, New York

    Google Scholar 

  • Henkel P, Gao GX, Walter T, Günther C (2009) Robust multi-carrier, multi-satellite vector phase locked loop with wideband ionospheric correction and integrated weighted RAIM. In: Proceedings of ENC GNSS 2009, Naples, Italy

  • Hernandéz-Pajares M, Juan JM, Sanz J (1999) New approaches in global ionospheric determination using ground GPS data. J Atmos Sol Terr Phys 61(16):1237–1247

    Article  Google Scholar 

  • Hobinger T, Jakowski N (2017) Atmospheric signal propagation. In: Teunissen PJ, Montenbruck O (eds) Springer handbook of global navigation satellite systems. Springer, Berlin, pp 165–194

    Chapter  Google Scholar 

  • Hoque MM, Jakowski N (2008) Mitigation of higher order ionospheric effects on GNSS users in Europe. GPS Solut 12(2):87–97. https://doi.org/10.1007/s10291-007-0069-5 (ISSN 1521–1886)

    Article  Google Scholar 

  • Jakowski N (1996) TEC monitoring by using satellite positioning systems. In: Kohl H, Ruester R, Schlegel K (eds) Modern ionospheric science. European Geophysical Society, Munich, pp 371–390

    Google Scholar 

  • Jakowski N (2017) Ionosphere monitoring. In: Teunissen PJ, Montenbruck O (eds) Springer handbook of global navigation satellite systems. Springer, Berlin, p. 1143 (Fig. 39.5)

    Google Scholar 

  • Jakowski N, Mayer C, Hoque MM, Wilken V (2011) Total electron content models and their use in ionosphere monitoring. Radio Sci 46(6):RS0D18

    Article  Google Scholar 

  • Johnston G, Riddell A, Hausler G (2017) The international GNSS service. In: Teunissen PJ, Montenbruck O (eds) Springer handbook of global navigation satellite systems. Springer, Berlin, pp 967–981

    Chapter  Google Scholar 

  • Kelley MC (2009) Earth’s ionosphere: plasma physics and electrodynamics. Elsevier, Burlington

    Google Scholar 

  • Klobuchar JA (1987) Ionospheric time-delay algorithm for single-frequency GPS users. IEEE Trans Aerosp Electron Syst 23(3):325–331. https://doi.org/10.1109/TAES.1987.310829

    Article  Google Scholar 

  • Li M, Yuan Y, Wang N, Li Z, Li Y, Huo X (2017) Estimation and analysis of Galileo differential code biases. J Geodesy 91(3):279–293. https://doi.org/10.1007/s00190-016-0962-1

    Article  Google Scholar 

  • Marques HA, Monico JFG, Rosa GPS, Chuerubim ML, Aquino M (2012) Second and third order ionospheric effects on GNSS positioning: a case study in Brazil. Geodesy Planet Earth IAG Symp 136:619–625

    Article  Google Scholar 

  • Sardón E, Rius A, Zarraoa N (1994) Estimation of the transmitter and receiver differential biases and the ionospheric total electron content from Global Positioning System observations. Radio Sci 29(3):577–586. https://doi.org/10.1029/94RS00449

    Article  Google Scholar 

  • Thoelert S, Furthner J, Meurer M (2013) GNSS survey—signal quality assessment of the latest GNSS satellites. In: Proceedings of ION ITM 2013, Institute of Navigation, January 28–30, San Diego, USA, pp 608–615

  • Ya’acob N, Abdullah M, Ismail M (2008) Determination of GPS total electron content using single layer model (SLM) ionospheric mapping function. Int J Comput Sci Netw Secur 8(9):154–160

    Google Scholar 

  • Zolesi B, Cander LR (2014) Ionospheric prediction and forecasting. Springer, Berlin, ISBN 978-3-642-38430-1

    Book  Google Scholar 

Download references

Acknowledgements

The authors want to thank the colleagues from the German Space Operation Center (GSOC), at the DLR ground station Weilheim for supporting and operating the high-gain antenna. Furthermore, the authors thank our colleagues Volker Wilken, Martin Kriegel, Jens Berdermann and Mainul Hoque from DLR Neustrelitz, for the provision of high-resolution TEC maps.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffen Thoelert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hörmann, U., Thoelert, S., Sgammini, M. et al. Ionospheric deformation of broadband GNSS signals and its analysis with a high gain antenna. GPS Solut 22, 94 (2018). https://doi.org/10.1007/s10291-018-0758-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10291-018-0758-2

Keywords

Navigation