On filtering ionospheric effects in GPS observations using the Matérn covariance family and its impact on orbit determination of Swarm satellites

Abstract

With three near-polar low earth orbiter satellites, the Swarm mission contributes to bridging the gap between Earth gravity field missions. However, observations from on-board GPS receivers are strongly impacted by ionospheric scintillations, degrading the kinematic orbit solutions of the satellites and thus the gravity field, which is derived from them. Besides the elimination of parts of the GPS observations strongly impacted by scintillations, an alternative is a physically based filtering of these measurements. Based on the previous empirical and theoretical works, a Matérn covariance function, whose parameters are to be chosen adequately, is an answer to mitigate ionospheric effects from the GPS time series. An optimal parameter set corresponding to a smoothness of 1 and a correlation factor of 1.5 is physically plausible and provides an adequate filtering of the ionospheric scintillations. The detection of noisy parts is carried out with an easy to use algorithm to obtain filtered time series with a homogeneous standard deviation. The orbit solution computed with filtered observations does not exhibit ionospheric artifacts compared with the non-filtered solution. At the same time, the high-frequency slope of the orbit power spectral density is similar to the one obtained for GPS carrier phase observations with low ionospheric scintillation errors. The proposed methodology is independent of the processing used, whether double differences, Observed Minus Computed or raw carrier phase observations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Abramowitz M, Segun IA (1972) Handbook of mathematical functions. Dover, New York

    Google Scholar 

  2. Allende-Alba G, Montenbruck O (2016) Robust and precise baseline determination of distributed spacecraft in LEO. Adv Space Res 57(1):46–63

    Article  Google Scholar 

  3. Aquino M, Dodson A, Souter J, Moore T (2007) Ionospheric scintillation effects on GPS carrier phase positioning accuracy: analysis at Auroral and Sub-Auroral latitudes. IAG Symposia, vol 130, chap 121. Springer, pp 859–866

  4. Beniguel Y (2002) Global ionospheric propagation (GIM): a propagation model for scintillations of transmitted signals. Radio Sci 37(3):4-1-4-13

    Article  Google Scholar 

  5. Beniguel Y, Adam JP (2009) Ionospheric equatorial scintillation characteristics. In: Proceedings of the IEEA-2009-Galileo-workshop, page 1–5

  6. Carrano CS, Rino C (2016) A theory of scintillation for two-component power law irregularity spectra: overview and numerical results. Radio Sci 51(6):789–813

    Article  Google Scholar 

  7. Dahle C, Arnold D, Jäggi A (2017) Impact of tracking loop settings of the Swarm GPS receiver on gravity field recovery. Adv Space Res 59(12):2843–2854

    Article  Google Scholar 

  8. Deng Z, Schön S, Zhang H, Bender M, Wickert J (2013) Medium-scale traveling ionospheric disturbances (MSTID) modeling using a dense German GPS network. Adv Space Res 51(6):1001–1007

    Article  Google Scholar 

  9. Gelfand AR, Diggle PJ, Fuentes M, Guttorp P (2010) Handbook of spatial statistics. CRC Press, Boca Raton

    Google Scholar 

  10. Hoffmann-Wellenhof B, Lichtenegger H, Collins J (2001) GPS theory and practice, 5edn. Springer, New York

    Google Scholar 

  11. Jäggi A, Dahle C, Arnold D, Bock H, Meyer Z, Beuter G, van den Ijssel J (2016) Swarm kinematic orbits and gravity fields from 18 months of GPS data. Adv Space Res 57(1):218–233

    Article  Google Scholar 

  12. Kermarrec G, Schön S (2014) On the Mátern covariance family: a proposal for modeling temporal correlations based on turbulence theory. J Geodesy 88(11):1061–1079

    Article  Google Scholar 

  13. Koch KR (1999) Parameter estimation and hypothesis testing in linear models. Springer, Berlin

    Google Scholar 

  14. Lilly JM, Sykulsky AM, Early JJ, Olhede SC (2017) Fractional Brownian motion, the Matérn process, and stochastic modelling of turbulent dispersion. Non Linear Process Geophys 24:481–514

    Article  Google Scholar 

  15. Mandelbrot BB, Van Ness JW (1968) Fractional Brownian motions, fractional noises and applications. SIAM Rev 10:422–437

    Article  Google Scholar 

  16. Mátern B (1960) Spatial variation-stochastic models and their application to some problems in forest surveys and other sampling investigation. Meddelanden från Statens Skogsforskningsinstitut, Stockholm. 49(5):144

  17. Odijk D (2003) Ionosphere-free phase combinations for modernized GPS. J Surv Eng 129(4):165–173

    Article  Google Scholar 

  18. Oliveira K, de Oliveira Moraes A, Costa E, Tadeu de Assis Honorato Muella M, de Paula ER, Perrella W (2014) Validation of the model of the power spectral density of GPS ionospheric amplitude scintillation. Int J Antennas Propag. https://doi.org/10.1155/2014/573615

    Google Scholar 

  19. Ren L, Schön S (2016) Swarm GPS Receiver Performance and Kinematic Orbit Determination under the Influence of Ionospheric Scintillation, In: Proceedings of the 8th ESA navitec 2016, 14.-16.12.2016, ESA/ESTEC, The Netherlands

  20. Rino CL (1979a) A power law phase screen model for ionospheric scintillation: I weak scatter. Radio Sci 14(6):1135–1145

    Article  Google Scholar 

  21. Rino CL (1979b) A power law phase screen model for ionospheric scintillation: II strong scatter. Radio Sci 14(6):1147–1155

    Article  Google Scholar 

  22. Siemes C, De Teixeira da Encarnação J, Doornbos E, van den IJssel J, Kraus J, Pereštý R, Grunwaldt L, Apelbaum G, Flury J, Holmdahl Olsen PE (2016) Swarm accelerometer data processing from raw accelerations to thermospheric neutral densities. Earth Planets Space 68(1):1–16

    Article  Google Scholar 

  23. Smith SW (1997) Scientist and engineer’s guide to digital signal processing. 2nd edn, California Technical Publishing, Poway, 1999, ISBN 0-9660176-7-6

    Google Scholar 

  24. Spicher A, Miloch WJ, Moen JI (2014) Direct evidence of double-slope power spectra in the high-latitude ionospheric plasma. Geophys Res Lett 41(5):1406–1412

    Article  Google Scholar 

  25. Stein ML (1999) Interpolation of spatial data. Some theory for kriging. Springer, New York

    Google Scholar 

  26. Susi M, Andreotti M, Aquino M. Dodson A (2017) Tuning a Kalman filter carrier tracking algorithm in the presence of ionospheric scintillation. GPS Solut 21(3):1149–1160

    Article  Google Scholar 

  27. Teixeira da Encarnação J, Arnold D, Bezdek A, Dahle C, Doornbos E, van den IJssel J, Jäggi A, Mayer-Gürr T, Sebera J, Visser P, Zehentner N (2016) Gravity field models derived from Swarm GPS data. Earth Planets Space 68(1):1–15

    Article  Google Scholar 

  28. Tsunoda RT (1988) High-latitude F region irregularities: a review and synthesis. Rev Geophys 26(4):719–760

    Article  Google Scholar 

  29. Van Dierendonck AJ, Klobuchar J, Hua Q (1993) Ionospheric scintillation monitoring using commercial single frequency C/A code receivers. In: Proceedings of ION GPS, Institute of Navigation, Salt Lake City. UT, September 22–24, 1333–1342

  30. van den IJssel J et al (2015) Precise science orbits for the Swarm satellite constellation. Adv Space Res 56(6):1042–1055

    Article  Google Scholar 

  31. Wheelon AD (2001) Electromagnetic scintillation part I geometrical optics. Cambridge University Press, Cambridge

    Google Scholar 

  32. Wu SC, Melbourne WG (1993) An optimal GPS data processing technique for precise positioning. IEEE Trans Geosci Remote Sens 31(1):146–152. https://doi.org/10.1109/36.210455

    Article  Google Scholar 

  33. Xiong C, Stolle C, Lühr H, Park J, Fejer BG, Kervalishvili GN (2016a)) Scale analysis of equatorial plasma irregularities derived from Swarm constellation. Earth Planets Space 68:121

    Article  Google Scholar 

  34. Xiong C, Stolle C, Lühr H (2016b) The Swarm satellite loss of GPS signal and its relation to ionospheric plasma irregularities. Space Weather 14(8):563–567

    Article  Google Scholar 

  35. Zangerl F, Griesauer F, Sust M, Montenbruck O, Buchert B, Garcia A, (2014). SWARM GPS precise orbit determination receiver initial in-orbit performance evaluation. In: Proceedings of the 27th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+), Tampa, Florida, pp. 1459–1468

Download references

Acknowledgements

The results are obtained within the project CONTIM and funded by the Deutsche Forschungsgemeinschaft (DFG) under the SPP1788 Dynamic Earth. The Swarm reduced-dynamic orbits have been made available by European Space Agency (ESA). GPS orbits and clock have been obtained from the Center for Orbit Determination in Europe (CODE). The support of these institutions is gratefully acknowledged. The reviewers are warmly acknowledged for their constructive comments.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gaël Kermarrec.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kermarrec, G., Ren, L. & Schön, S. On filtering ionospheric effects in GPS observations using the Matérn covariance family and its impact on orbit determination of Swarm satellites. GPS Solut 22, 66 (2018). https://doi.org/10.1007/s10291-018-0733-y

Download citation

Keywords

  • Ionospheric scintillations
  • GPS
  • Kinematic orbit
  • SWARM
  • Matérn family