Skip to main content
Log in

Design and validation of broadcast ephemeris for low Earth orbit satellites

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

Low Earth orbit (LEO) constellations have potentialities to augment global navigation satellite systems for better service performance. The prerequisite is to provide the broadcast ephemerides that meet the accuracy requirement for navigation and positioning. In this study, the Kepler ephemeris model is chosen as the basis of LEO broadcast ephemeris design for backward compatibility and simplicity. To eliminate the singularity caused by the smaller eccentricity of LEO satellites compared to MEO satellites, non-singular elements are introduced for curve fitting of parameters and then transformed to Kepler elements to assure the algorithm of ephemeris computation remains unchanged for the user. We analyze the variation characteristics of LEO orbital elements and establish suitable broadcast ephemeris models considering fit accuracy, number of parameters, fit interval, and orbital altitude. The results of the fit accuracy for different fit intervals and orbital altitudes suggest that the optimal parameter selections are \((Crs3,Crc3)\), \((Crs3,Crc3, \, \dot{a},\dot{n})\) and \(\left( {Crs3,Crc3, \, \dot{a},\dot{n}, \, \ddot{i},\ddot{a}} \right)\), i.e., adding two, four or six parameters to the GPS 16-parameter ephemeris. When adding four parameters, the fit accuracy can be improved by about one order of magnitude compared to the GPS 16-parameter ephemeris model, and fit errors of less than 10 cm can be achieved with 20-min fit interval for a 400–1400 km orbital altitude. In addition, the effects of the number of parameters, fit interval, and orbit altitude on fit accuracy are discussed in detail. The validation with four LEO satellites in orbit also confirms the effectiveness of proposed models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Brouwer D, Clemence GM, Chako N (2005) Methods of celestial mechanics. Springer, Berlin

    Google Scholar 

  • Chen L, Jiao W, Huang X, Geng C, Ai L, Lu L, Hu Z (2013) Study on signal-in-space errors calculation method and statistical characterization of BeiDou navigation satellite system. Proc China Satell Navig Conf 2013:423–434

    Google Scholar 

  • CSNO (2013) BeiDou navigation satellite system signal in space interface control document-open service signal. Version 2.0, 26 December 2013, China Satellite Navigation Office (CSNO)

  • Cui X (2006) Comparisons of two kinds of GPS broadcast ephemeris parameter algorithms. Chin J Sp Sci 26(5):382–387

    Google Scholar 

  • Dierendonck AJV, Russell SS, Kopitzke ER, Birnbaum M (1978) The GPS navigation message. Navigation 25(2):147–165

    Article  Google Scholar 

  • Diesposti R, Dilellio J, Kelley C, Dorsey A, Fliegel H, Berg J, Edgar C, Mckendree T, Shome P (2004) The proposed state vector representation of broadcast navigation message for user equipment implementation of GPS satellite ephemeris propagation. In: Proceedings of the ION NTM 2004, pp 294–312. Institute of Navigation, San Diego, California, USA, 26–28 Jan

  • Du L, Zhang Z, Zhang J, Liu L, Guo R, He F (2014) An 18-element GEO broadcast ephemeris based on non-singular elements. GPS Solut 19(1):49–59

    Article  Google Scholar 

  • EU (2015) European GNSS (Galileo) open service signal in space interface control document. Issue 1.2, November 2015. European Union

  • Fang S, Du L, Zhou P, Lu Y, Zhang Z, Liu Z (2016) Orbital list ephemerides design of LEO navigation augmentation satellite. Acta Geod Cartogr Sin 45(8):904–910

    Google Scholar 

  • Fu X, Wu M (2011) Optimal design of broadcast ephemeris parameters for a navigation satellite system. GPS Solut 16(4):439–448

    Article  Google Scholar 

  • Gilthorpe MS, Moore P (1992) A combined theory for zonal harmonic and resonance perturbations of a near-circular orbit with applications to COSMOS 1603 (1984-106A). Celest Mech Dyn Astron 54(4):363–391

    Article  Google Scholar 

  • GPS Directorate (2013) Navstar GPS space segment/navigation user interfaces. Interface specification, IS-GPS-200H, Version H, September 23, 2013, Global Positioning Systems Directorate

  • Guo J, Zhao Q, Guo X, Liu X, Liu J, Zhou Q (2015) Quality assessment of onboard GPS receiver and its combination with DORIS and SLR for Haiyang 2A precise orbit determination. Sci China Earth Sci 58(1):138–150

    Article  Google Scholar 

  • He F, Hu X, Liu L, Huang H, Zhou S, Wu S, Gu L, Zhao H, Liu X (2014) Fitting method and accuracy analysis of broadcast ephemeris in hybrid constellation. Proc China Satell Navig Conf 2014:265–275

    Google Scholar 

  • Heng L, Gao G, Walter T, Enge P (2011) Statistical characterization of GLONASS broadcast ephemeris errors. In: Proceedings of the ION GNSS 2011, pp 3109–3117. Institute of Navigation, Portland, Oregon, USA, 19–23 Sept

  • Hintz GR (2008) Survey of orbit element sets. J Guid Control Dyn 31(3):785–790

    Article  Google Scholar 

  • Horemuž M, Andersson JV (2006) Polynomial interpolation of GPS satellite coordinates. GPS Solut 10(1):67–72

    Article  Google Scholar 

  • Hu Z, Chen G, Zhang Q, Guo J, Su X, Li X, Zhao Q, Liu J (2013) An initial evaluation about BDS navigation message accuracy. Proc China Satell Navig Conf 2013:479–491

    Google Scholar 

  • Hugentobler U, Montenbruck O (2017) Satellite orbits and attitude, Chap. 3. In: Teunissen PJG, Montenbruck O (eds) Springer handbook of global navigation satellite systems. Springer, Berlin

    Google Scholar 

  • ICD-GLONASS (2016) Global navigation satellite system GLONASS, interface control document, general description of code division multiple access signal system. Edition 1.0, Russian Institute of Space Device Engineering

  • JAXA (2014) Quasi-Zenith satellite system navigation service interface specification for QZSS. IS-QZSS V1.6, November 28, 2014, Japan Aerospace Exploration Agency

  • Joerger M, Neale J, Pervan B (2009) Iridium/GPS carrier phase positioning and fault detection over wide areas. In: Proceedings of the ION GNSS 2009, pp 1371–1385. Institute of Navigation, Savannah, Georgia, USA, 22–25 Sept

  • Joerger M, Gratton L, Pervan B, Cohen CE (2010) Analysis of iridium-augmented GPS for floating carrier phase positioning. Navigation 57(2):137–160

    Article  Google Scholar 

  • Liu J, Ge M (2003) PANDA software and its preliminary result of positioning and orbit determination. Wuhan Univ J Nat Sci 8(2B):603–609

    Google Scholar 

  • Montenbruck O, Gill E (2000) Satellite orbits: models, methods, and applications. Springer, Berlin

    Book  Google Scholar 

  • Montenbruck O, Steigenberger P, Hauschild A (2014) Broadcast versus precise ephemerides: a multi-GNSS perspective. GPS Solut 19(2):321–333

    Article  Google Scholar 

  • Piscane VL, Holland BB, Black HD (1973) Recent (1973) improvements in the navy navigation satellite system. Navigation 20(3):224–229

    Article  Google Scholar 

  • Rabinowitz M, Spilker JJ (2005) A new positioning system using television synchronization signals. IEEE Trans Broadcast 51(1):51–61

    Article  Google Scholar 

  • Reid TGR, Walter T, Enge PK, Sakai T (2015) Orbital representations for the next generation of satellite-based augmentation systems. GPS Solut 20(4):737–750

    Article  Google Scholar 

  • Reid TGR, Neish A, Walter T, Enge PK (2016) Leveraging commercial broadband LEO constellations for navigation. In: Proceedings of the ION GNSS + 2016, pp 2300–2314. Institute of Navigation, Portland, Oregon, USA, 12–16 Sept

  • Thomas A, Stansell JR (1968) The navy navigation satellite system: description and status. Navigation 15(3):229–243

    Article  Google Scholar 

  • Tian S, Dai W, Liu R, Chang J, Li G (2014) System using hybrid LEO-GPS satellites for rapid resolution of integer cycle ambiguities. IEEE Trans Aerosp Electron Syst 50(3):1774–1785

    Article  Google Scholar 

  • Warren DL, Raquet JF (2003) Broadcast vs. precise GPS ephemerides: a historical perspective. GPS Solut 7(3):151–156

    Article  Google Scholar 

  • Xu G, Xu Y (2007) GPS: theory, algorithms and applications. Springer, Berlin

    Google Scholar 

  • Xu G, Xu J (2013) On the singularity problem in orbital mechanics. Mon Not R Astron Soc 429(2):1139–1148

    Article  Google Scholar 

  • Yin H, Morton Y, Carroll M, Vinande E (2015) Performance analysis of L2 and L5 CNAV broadcast ephemeris for orbit calculation. Navigation 62(2):121–130

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Nature Science Foundation of China (Nos. 41674004, 41574030) and Fundamental Research Funds for the Central Universities (No. 2042016kf0185).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Geng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, X., Geng, T., Zhao, Q. et al. Design and validation of broadcast ephemeris for low Earth orbit satellites. GPS Solut 22, 54 (2018). https://doi.org/10.1007/s10291-018-0719-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10291-018-0719-9

Keywords

Navigation