Advertisement

GPS Solutions

, 22:42 | Cite as

Beidou satellite maneuver thrust force estimation for precise orbit determination

  • Jing Qiao
  • Wu Chen
Original Article
  • 331 Downloads

Abstract

Beidou satellites, especially geostationary earth orbit (GEO) and inclined geosynchronous orbit (IGSO) satellites, need to be frequently maneuvered to keep them in position due to various perturbations. The satellite ephemerides are not available during such maneuver periods. Precise estimation of thrust forces acting on satellites would provide continuous ephemerides during maneuver periods and could significantly improve orbit accuracy immediately after the maneuver. This would increase satellite usability for both real-time and post-processing applications. Using 1 year of observations from the Multi-GNSS Experiment network (MGEX), we estimate the precise maneuver periods for all Beidou satellites and the thrust forces. On average, GEO and IGSO satellites in the Beidou constellation are maneuvered 12 and 2 times, respectively, each year. For GEO satellites, the maneuvers are mainly in-plane, while out-of-plane maneuvers are observed for IGSO satellites and a small number of GEO satellites. In most cases, the Beidou satellite maneuver periods last 15–25 min, but can be as much as 2 h for the few out-of-plane maneuvers of GEO satellites. The thrust forces acting on Beidou satellites are normally in the order of 0.1–0.7 mm/s2. This can cause changes in velocity of GEO/IGSO satellites in the order of several decimeters per second. In the extreme cases of GEO out-of-plane maneuvers, very large cross-track velocity changes are observed, namely 28 m/s, induced by 5.4 mm/s2 thrust forces. Also, we demonstrate that by applying the estimated thrust forces in orbit integration, the orbit errors can be estimated at decimeter level in along- and cross-track directions during normal maneuver periods, and 1–2 m in all the orbital directions for the enormous GEO out-of-plane maneuver.

Keywords

Beidou Maneuver detection Thrust force Precise orbit determination 

Notes

Acknowledgements

The work was substantially supported by Grants from The Hong Kong RGC Joint Research Scheme (E-PolyU501/16).

References

  1. BeiDou ICD (2013) BeiDou navigation satellite system signal in space interface control document open service signal (version 2.0). http://en.beidou.gov.cn/beidoupolicy.html
  2. Beutler G, Brockmann E, Gurtner W, Hugentobler U, Mervart L, Rothacher M, Verdun A (1994) Extended orbit modeling techniques at the CODE processing center of the international GPS service for geodynamics (IGS): theory and initial results. Manuscr Geod 19(6):367–386Google Scholar
  3. Dach R, Brockmann E, Schaer S, Beutler G, Meindl M, Prange L, Bock H, Jäggi A, Ostini L (2009) GNSS processing at CODE: status report. J Geodesy 83(3–4):353–365.  https://doi.org/10.1007/s00190-008-0281-2 CrossRefGoogle Scholar
  4. Du L, Zhang Z, Zhang J, Liu L, Guo R, He F (2014) An 18-element GEO broadcast ephemeris based on non-singular elements. GPS Solut 19(1):49–59.  https://doi.org/10.1007/s10291-014-0364-x CrossRefGoogle Scholar
  5. Gienger G, Pereira FL (2012) Towards Automated Determination of Orbit Maneuvers for GNSS Satellites. In: Conference on dynamics and control of space systems, Porto, Portugal, March. pp 131–150Google Scholar
  6. Hugentobler U (1998) Astrometry and satellite orbits: theoretical considerations and typical applications, (Schweizerische Geodätische Kommission, Zürich 1998), Geodätisch-geophysikalische Arbeiten in der SchweizGoogle Scholar
  7. Hugentobler U, Ploner M, Schildnecht T, Beutler G (1999) Determination of resonant geopotential terms using optical observations of geostationary satellites. Adv Space Res 23(4):767–770CrossRefGoogle Scholar
  8. Jäggi A, Montenbruck O, Moon Y, Wermuth M, König R, Michalak G, Bock H, Bodenmann D (2012) Inter-agency comparison of TanDEM-X baseline solutions. Adv Space Res 50(2):260–271.  https://doi.org/10.1016/j.asr.2012.03.027 CrossRefGoogle Scholar
  9. Ju B, Gu D, Herring TA, Allende-Alba G, Montenbruck O, Wang Z (2017) Precise orbit and baseline determination for maneuvering low earth orbiters. GPS Solut 21(1):53–64.  https://doi.org/10.1007/s10291-015-0505-x CrossRefGoogle Scholar
  10. Kelecy T, Hall D, Hamada K, Stocker MD (2007) Satellite maneuver detection using two-line element (TLE) data. In: Proceedings of the advanced Maui optical and space surveillance technologies conference, Maui, Hawaii, 12–15 Sept, pp 166–181Google Scholar
  11. Lou Y, Liu Y, Shi C, Wang B, Yao X, Zheng F (2016) Precise orbit determination of BeiDou constellation: method comparison. GPS Solut 20(2):259–268.  https://doi.org/10.1007/s10291-014-0436-y CrossRefGoogle Scholar
  12. Patera RP (2008) Space event detection method. J Spacecr Rockets 45(3):554–559.  https://doi.org/10.2514/1.30348 CrossRefGoogle Scholar
  13. Prange L, Orliac E, Dach R, Arnold D, Beutler G, Schaer S, Jäggi A (2016) CODE’s five-system orbit and clock solution—the challenges of multi-GNSS data analysis. J Geodesy 91(4):345–360.  https://doi.org/10.1007/s00190-016-0968-8 CrossRefGoogle Scholar
  14. Sehnal L (1960) The perturbations of the orbit of the stationary satellite of the Earth. Bull Astron Inst Czechoslov 11:132Google Scholar
  15. Song WD, Wang RL, Wang J (2012) A simple and valid analysis method for orbit anomaly detection. Adv Space Res 49(2):386–391.  https://doi.org/10.1016/j.asr.2011.10.007 CrossRefGoogle Scholar
  16. Steigenberger P, Hugentobler U, Hauschild A, Montenbruck O (2013) Orbit and clock analysis of Compass GEO and IGSO satellites. J Geodesy 87(6):515–525.  https://doi.org/10.1007/s00190-013-0625-4 CrossRefGoogle Scholar
  17. Xie J, Wang J, Mi H (2012) Analysis of Beidou navigation satellites in-orbit state. In: Sun J, Liu J, Yang Y, Fan S (eds) Proceedings of China satellite navigation conference (CSNC) 2012. Springer, Berlin, pp 111–122.  https://doi.org/10.1007/978-3-642-29193-7_10
  18. Yoon Y, Montenbruck O, Kirschner M (2006) Precise maneuver calibration for remote sensing satellites. In: Proceedings of the 19th international symposium on space flight dynamics, Kanazawa, June 4–11, pp 607–612Google Scholar
  19. Zhang J, Qiu H, Yang Y, Guo W (2013) Application of thrust force model in GEO’s orbit determination in case of Maneuvers. In: Sun J, Jiao W, Wu H, Shi C (eds) Proceedings of China satellite navigation conference (CSNC) 2013. Springer, Berlin, pp 55–66.  https://doi.org/10.1007/978-3-642-37407-4_5
  20. Zhao QL, Guo J, Li M, Qu LZ, Hu ZG, Shi C, Liu JN (2013) Initial results of precise orbit and clock determination for COMPASS navigation satellite system. J Geodesy 87(5):475–486.  https://doi.org/10.1007/s00190-013-0622-7 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Land Surveying and Geo-InformaticsHong Kong Polytechnic UniversityHong KongChina

Personalised recommendations