Advertisement

GPS Solutions

, Volume 21, Issue 4, pp 1855–1870 | Cite as

Analysis of Galileo IOV + FOC signals and E5 RTK performance

  • Safoora Zaminpardaz
  • Peter J. G. Teunissen
Original Article

Abstract

The current Galileo constellation in April 2017 comprises both in-orbit validation and full operational capability satellites transmitting signals on five frequencies, i.e., E1, E5a, E5b, E5, and E6. We analyze the power, multipath and noise of these signals using the data collected by four short baselines of various lengths and receiver/antenna types in Perth, Australia, as well as the Netherlands. In our analysis, the Galileo signals, except E5, show different relative noise and multipath performance for different receiver/antenna types. The E5 signal, with a weak dependency on the type of receiver/antenna, shows a significantly lower level of multipath and noise with respect to the other signals. Estimations of the E5 code standard deviation based on the data of each of the mentioned baselines gives a value of about 6 cm, which is further reduced to about 1 cm once the data are corrected for multipath. Due to the superior stochastic properties of E5 signal compared to the other Galileo signals, we further analyze the short-baseline real-time kinematic performance of the Galileo standalone E5 observations. Our findings confirm that the Galileo E5 data, if corrected for the multipath effect, can make (almost) instantaneous ambiguity resolution feasible already based on the current constellation.

Keywords

Galileo IOV FOC E5AltBOC Signal power Multipath Noise characteristics Integer ambiguity resolution RTK 

Notes

Acknowledgements

The second author is the recipient of an Australian Research Council (ARC) Federation Fellowship (Project Number FF0883188). The Netherlands data were provided by Mr. Lennard Huisman from Kadaster, the Netherlands. This support is greatly acknowledged. We are also thankful to Dr. Nandakumaran Nadarajah and Dr. Mohammad Choudhury from Curtin University GNSS Research Center, Perth, Australia, for providing the data of UWA0 station.

References

  1. Afifi A, El-Rabbany A (2014) Single frequency GPS/Galileo precise point positioning using un-differenced and between-satellite single difference measurements. GEOMATICA 68:195–205CrossRefGoogle Scholar
  2. Amiri-Simkooei AR, Teunissen PJG, Tiberius CCJM (2009) Application of least-squares variance component estimation to GPS observables. J Surv Eng 135(4):149–160CrossRefGoogle Scholar
  3. Bock Y (1991) Continuous monitoring of crustal deformation. GPS World 2(6):40–47Google Scholar
  4. Cai C, Luo X, Liu Z, Xiao Q (2014) Galileo signal and positioning performance analysis based on four IOV satellites. Navigation 67:810–824CrossRefGoogle Scholar
  5. Cai C, Gao Y, Pan L, Zhu J (2015) Precise point positioning with quad-constellations: GPS, BeiDou, GLONASS and Galileo. Adv Space Res 56:133–143CrossRefGoogle Scholar
  6. Cai C, He C, Santerre R, Pan L, Cui X, Zhu J (2016) A comparative analysis of measurement noise and multipath for four constellations: GPS, BeiDou, GLONASS and Galileo. Surv Rev 48:287–295CrossRefGoogle Scholar
  7. de Bakker PF, van der Marel H, Tiberius CC (2009) Geometry-free undifferenced, single and double differenced analysis of single frequency GPS, EGNOS and GIOVE-A/B measurements. GPS Solut 13(4):305–314CrossRefGoogle Scholar
  8. de Bakker PF, Tiberius CC, Van Der Marel H, van Bree RJ (2012) Short and zero baseline analysis of GPS L1 C/A, L5Q, GIOVE E1B, and E5aQ signals. GPS solut 16(1):53–64CrossRefGoogle Scholar
  9. Diessongo TH, Schüler T, Junker S (2014) Precise position determination using a Galileo E5 single-frequency receiver. GPS Solut 18(1):73–83CrossRefGoogle Scholar
  10. EL-Hattab AI (2013) Influence of GPS antenna phase center variation on precise positioning. NRIAG J Astron Geophys 2:272–277CrossRefGoogle Scholar
  11. Estey LH, Meertens CM (1999) TEQC: the multi-purpose toolkit for GPS/GLONASS data. GPS Solut 3(1):42–49CrossRefGoogle Scholar
  12. Euler HJ, Goad CC (1991) On optimal filtering of GPS dual frequency observations without using orbit information. Bull Geodes 65(2):130–143CrossRefGoogle Scholar
  13. European Union (2015) European GNSS (Galileo) open service signal in space interface control document, OS SIS ICD, Issue 1.2, Nov 2015Google Scholar
  14. Gaglione S, Angrisano A, Castaldo G, Freda P, Gioia C, Innac A, Troisi S, Del Core G (2015) The first Galileo FOC satellites: from useless to essential. In: 2015 IEEE international on geoscience and remote sensing symposium (IGARSS), IEEE, pp 3667–3670. doi: 10.1109/IGARSS.2015.732661814
  15. Genrich JF, Bock Y (1992) Rapid resolution of crustal motion at short ranges with the global positioning system. J Geophys Res 97:3261–3269CrossRefGoogle Scholar
  16. Gioia C, Borio D, Angrisano A, Gaglione S, Fortuny-Guasch J (2015) A Galileo IOV assessment: measurement and position domain. GPS Solut 19:187–199CrossRefGoogle Scholar
  17. Guo F, Li X, Zhang X, Wang J (2017) Assessment of precise orbit and clock products for Galileo, BeiDou, and QZSS from IGS multi-GNSS experiment (MGEX). Surv Rev 21:279–290Google Scholar
  18. Hauschild A, Montenbruck O, Sleewaegen JM, Huisman L, Teunissen PJ (2012) Characterization of compass M-1 signals. GPS Solut 16(1):117–126CrossRefGoogle Scholar
  19. Hellemans A (2014) A simple plumbing problem sent Galileo satellites into wrong orbits. http://spectrum.ieee.org/tech-talk/aerospace/satellites/a-simple-plumbing-problem-sent-galileo-satellites-into-wrong-orbits
  20. Hofmann-Wellenhof B, Lichtenegger H, Wasle E (2008) GNSS-global navigation satellite systems, GPS, GLONASS, Galileo and more. Springer, BerlinGoogle Scholar
  21. Langley R (2014) ESA discusses Galileo satellite power loss, upcoming launch. http://gpsworld.com/esa-discusses-galileo-satellite-power-loss-upcoming-launch/. Published 20 Aug 2014
  22. Langley RB, Banville S, Steigenberger P (2012) First results: precise positioning with Galileo prototype satellites. GPS World 23:45–49Google Scholar
  23. Li X, Ge M, Dai X, Ren X, Fritsche M, Wickert J, Schuh H (2015) Accuracy and reliability of multi-GNSS real-time precise positioning: GPS, GLONASS, BeiDou, and Galileo. J Geod 89:607–635CrossRefGoogle Scholar
  24. Liu T, Yuan Y, Zhang B, Wang N, Tan B, Chen Y (2017) Multi-GNSS precise point positioning (MGPPP) using raw observations. J Geod 91(3):253–268CrossRefGoogle Scholar
  25. Lou Y, Zheng F, Gu S, Wang C, Guo H, Feng Y (2016) Multi-GNSS precise point positioning with raw single-frequency and dual-frequency measurement models. GPS Solut 20:849–862CrossRefGoogle Scholar
  26. Mader G (2002) GPS antenna calibration at the national geodetic survey. National Geodetic Survey, NOS, NOAA, Silver Spring, MDGoogle Scholar
  27. Nadarajah N, Teunissen PJG (2014) Instantaneous GPS/Galileo/QZSS/SBAS attitude determination: a single-frequency (L1/E1) robustness analysis under constrained environments. Navigation 61(1):65–75CrossRefGoogle Scholar
  28. Nadarajah N, Teunissen PJG, Raziq N (2013) Instantaneous GPS–Galileo attitude determination: single-frequency performance in satellite-deprived environments. IEEE Trans Veh Technol 62(7):2963–2976CrossRefGoogle Scholar
  29. Nadarajah N, Khodabandeh A, Teunissen PJG (2015) Assessing the IRNSS L5-signal in combination with GPS, Galileo, and QZSS L5/E5a-signals for positioning and navigation. GPS Solut 20(2):289–297CrossRefGoogle Scholar
  30. Odijk D, Teunissen PJG, Huisman L (2012) First results of mixed GPS + GIOVE single-frequency RTK in Australia. J Spat Sci 57(1):3–18CrossRefGoogle Scholar
  31. Odijk D, Teunissen PJG, Khodabandeh A (2014) Galileo IOV RTK positioning: standalone and combined with GPS. Surv Rev 46:267–277CrossRefGoogle Scholar
  32. Odolinski R, Odijk D, Teunissen PJG (2015) Combined BDS, Galileo, QZSS and GPS single-frequency RTK. GPS Solut 19:151–163CrossRefGoogle Scholar
  33. Pan L, Cai C, Santerre R, Zhang X (2017) Performance evaluation of single-frequency point positioning with GPS, GLONASS, BeiDou and Galileo. Surv Rev. doi: 10.1080/00396265.2016.1151628 Google Scholar
  34. Simsky A, Sleewaegen JM, Hollreiser M, Crisci M (2006) Performance assessment of galileo ranging signals transmitted by GSTB-V2 satellites. In: Proceedings of ION GNSS 2006, Institute of Navigation, Fort Worth, TX, USA, 26–29 Sept, pp 1547–1559Google Scholar
  35. Simsky A, Mertens D, Sleewaegen JM, Hollreiser M, Crisci M (2008a) Experimental results for the multipath performance of galileo signals transmitted by GIOVE—a satellite. Int J Navig Observ. doi: 10.1155/2008/416380 Google Scholar
  36. Simsky A, Sleewaegen JM, Wilde WD, Hollreiser M, Crisci M (2008b) Multipath and tracking performance of galileo ranging signals transmitted by GIOVE-B. In: Proceedings of ION GNSS 2008, Institute of Navigation, Savannah, Georgia, USA, 16–19 Sept, pp 1525–1536Google Scholar
  37. Steigenberger P, Montenbruck O (2016) Galileo status: orbits, clocks, and positioning. GPS Solut 21(2):319–331CrossRefGoogle Scholar
  38. Steigenberger P, Hugentobler U, Montenbruck O (2013) First demonstration of Galileo-only positioning. GPS World 24:14–15Google Scholar
  39. Tegedor J, Øvstedal O, Vigen E (2014) Precise orbit determination and point positioning using GPS, Glonass, Galileo and BeiDou. J Geod Sci 4:65–73Google Scholar
  40. Tegedor J, Øvstedal O, Vigen E (2015) Estimation of Galileo uncalibrated hardware delays for ambiguity-fixed precise point positioning. Navigation 63:173–179CrossRefGoogle Scholar
  41. Teunissen PJG (1998) Success probability of integer GPS ambiguity rounding and bootstrapping. J Geod 72(10):606–612CrossRefGoogle Scholar
  42. Teunissen PJG (1999) An optimality property of the integer least-squares estimator. J Geod 73(11):587–593CrossRefGoogle Scholar
  43. Teunissen PJG, Amiri-Simkooei AR (2008) Least-squares variance component estimation. J Geod 82(2):65–82CrossRefGoogle Scholar
  44. Teunissen PJG, Montenbruck O (eds) (2017) Springer handbook of global navigation satellite systems. Springer, BerlinGoogle Scholar
  45. Tranquilla JM, Cam JP, Al-Rizzo HM (1994) Analysis of a choke ring groundplane for multipath control in global positioning system (GPS) applications. IEEE Trans Antennas Propag 42(7):905–911CrossRefGoogle Scholar
  46. Verhagen S, Teunissen PJG (2014) Ambiguity resolution performance with GPS and BeiDou for LEO formation flying. Adv Space Res 54(5):830–839CrossRefGoogle Scholar
  47. Zaminpardaz S, Teunissen PJG, Nadarajah N (2016) GLONASS CDMA L3 ambiguity resolution and positioning. GPS Solut 21(2):535–549CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.GNSS Research CentreCurtin UniversityPerthAustralia
  2. 2.Department of Geoscience and Remote SensingDelftThe Netherlands

Personalised recommendations