Advertisement

GPS Solutions

, Volume 21, Issue 4, pp 1479–1489 | Cite as

Using external tropospheric corrections to improve GNSS positioning of hot-air balloon

  • Pavel VaclavovicEmail author
  • Jan Dousa
  • Michal Elias
  • Jakub Kostelecky
Original Article

Abstract

High accurate global navigation satellite systems (GNSS) require to correct a signal delay caused by the troposphere. The delay can be estimated along with other unknowns or introduced from external models. We assess the impact of the recently developed augmentation tropospheric model on real-time kinematic precise point positioning (PPP). The model is based on numerical weather forecast and thus reflects the actual state of weather conditions. Using the G-Nut/Geb software, we processed GNSS and meteorological data collected during the experiment using a hot-air balloon flying up to an altitude of 2000 m. We studied the impacts of random walk noise setting of zenith total delay (ZTD) on estimated parameters and the mutual correlations, the use of external tropospheric corrections, the use of data from a single or dual GNSS constellation and the use of Kalman filter and backward smoothing processing methods. We observed a significant negative correlation of the estimated rover height and ZTD which depends on constraining ZTD estimates. Such correlation caused a degraded performance of both parameters when estimated simultaneously, in particular for a single GNSS constellation. The impact of ZTD constraining reached up to 50-cm differences in the rover height. Introducing external tropospheric corrections improved the PPP solution regarding: (1) shortened convergence, (2) better overall robustness, particularly, in case of degraded satellite geometry, (3) less adjusted parameters with lower correlations. The numerical weather model-driven PPP resulted in 9–12- and 5–6-cm uncertainties in the rover altitude using the Kalman filter and the backward smoothing, respectively. Compared to standard PPP, it indicates better performance by a factor of 1–2 depending on the availability of GNSS constellations, the troposphere constraining and the processing strategy.

Keywords

GNSS Tropospheric corrections Zenith total delay Numerical weather forecast Precise point positioning Kinematic positioning 

Notes

Acknowledgements

The experimental data collection, processing and tropospheric model enhancement have been supported by the ESA project DARTMA (EGEP-ID-89 06). The initial tropospheric model development has been supported by the ESA project Trop4LAS. We acknowledge the provision of data from operational weather forecasts run by the Institute of Computer Science of the Academy of Sciences, Czech Republic, within the DARTMA project.

References

  1. Askne J, Nordius H (1987) Estimation of tropospheric delay for microwaves from surface weather data. Radio Sci 22(3):379–386CrossRefGoogle Scholar
  2. Bennitt G, Jupp A (2012) Operational assimilation of GPS zenith total delay observations into the met office numerical weather prediction models. Mon Weather Rev 140(8):2706–2719. doi: 10.1175/MWR-D-11-00156.1 CrossRefGoogle Scholar
  3. Böhm J, Niell A, Tregoning P, Schuh H (2006) Global Mapping Function (GMF): a new empirical mapping function based on numerical weather model data. Geophys Res Lett. doi: 10.1029/2005GL025546 Google Scholar
  4. Böhm J, Heinkelmann R, Schuh H (2007) Short note: a global model of pressure and temperature for geodetic applications. J Geodesy 81:679–683. doi: 10.1007/s00190-007-0135-3 CrossRefGoogle Scholar
  5. Dousa J (2010) The impact of errors in predicted GPS orbits on zenith troposphere delay estimation. GPS Solut 14(3):229–239. doi: 10.1007/s10291-009-0138-z CrossRefGoogle Scholar
  6. Dousa J, Elias M (2014) An improved model for calculating tropospheric wet delay. Geophys Res Lett 41(12):4389–4397. doi: 10.1002/2014GL060271 CrossRefGoogle Scholar
  7. Dousa J, Vaclavovic P (2014) Real-time zenith tropospheric delays in support of numerical weather prediction applications. Adv Space Res 53(9):1347–1358. doi: 10.1016/j.asr.2014.02.021 CrossRefGoogle Scholar
  8. Dousa J, Vaclavovic P (2016) Evaluation of ground-based GNSS tropospheric products at Geodetic Observatory Pecný. In: Rizos Ch, Willis P (eds) IAG symposia series, vol 143. Springer, Berlin, pp 759–766. doi: 10.1007/1345_2015_157 Google Scholar
  9. Dousa J, Vaclavovic P, Krc P, Elias M, Eben E, Resler J (2015a) NWM forecast monitoring with near real-time GNSS products, In: Proceedings of the 5th scientific Galileo colloquium, Braunschweig, Germany, October 27–29, 2015Google Scholar
  10. Dousa J, Elias M, Veerman H, van Leeuwen SS, Zelle H, de Haan S, Martellucci A, Perez RO (2015b) High accuracy tropospheric delay determination based on improved modelling and high resolution Numerical Weather Model. In: Proceedings ION GNSS 2015, Institute of Navigation, Tampa, Florida, USA, September 14–18, 3734-3744Google Scholar
  11. Schüler T, Hein G W, Eissfeller, B (2000) Towards an optimal strategy for GPS wet delay Kalman filtering. In: Proceedings of IAIN world congress 56th annual meeting of The Institute of NavigationGoogle Scholar
  12. Gendt G, Dick G, Reigber C, Tomassini M, Liu YX, Ramatschi MJ (2004) Near real time GPS water vapor monitoring for numerical weather prediction in Germany. J Meteorol Soc Jpn 82(1B):361–370. doi: 10.2151/jmsj.2004.361 CrossRefGoogle Scholar
  13. Hadas T, Kaplon J, Bosy J, Sierny J, Wilgan K (2013) Near-real-time regional troposphere models for the GNSS precise point positioning technique. Meas Sci Technol. doi: 10.1088/0957-0233/24/5/055003 Google Scholar
  14. Ibrahim HE, El-Rabbany (2011) A performance analysis of NOAA tropospheric signal delay model. Meas Sci Technol. doi: 10.1088/0957-0233/22/11/115107 Google Scholar
  15. Laurichesse D, Cerri L, Berthias J P, Mercier F (2013) Real time precise GPS constellation and clocks estimation by means of a Kalman filter. In: Proceedings ION GNSS 2013, Institute of Navigation, Nashville, Tennessee, USA, September 16–20, pp 1155–1163Google Scholar
  16. Li X, Zhang X, Ge M (2011) Regional reference network augmented precise point positioning for instantaneous ambiguity resolution. J Geodesy 85(3):151–158. doi: 10.1007/s00190-010-0424-0 CrossRefGoogle Scholar
  17. Mervart L, Weber G (2013) BKG Ntrip Client v2.9, software. https://igs.bkg.bund.de/ntrip/
  18. Michalakes J, Dudhia J, Gill D, Klemp J, Skamarock W (1998) Design of a next-generation regional weather research and forecast model. Towards Teracomputing. World Scientific, River Edge, pp 117–124Google Scholar
  19. RTCA (2006) Minimum operational performance standards for global positioning system/wide area augmentation system airborne equipment. RTCA publication DO-229DGoogle Scholar
  20. Saastamoinen J (1972) Atmospheric correction for the troposphere and stratosphere in radio ranging of satellites. In: The use of artificial satellites for geodesy. American Geophysical Union, Washington, DC doi: 10.1029/GM015p0247
  21. Shi JB, Xu CQ, Guo JM, Gao Y (2014) Local troposphere augmentation for real-time precise point positioning. Earth Planets Space. doi: 10.1186/1880-5981-66-30 Google Scholar
  22. Vaclavovic P, Dousa J (2015) Backward smoothing for precise GNSS applications. Adv Space Res 56(8):1627–1634. doi: 10.1016/j.asr.2015.07.020 CrossRefGoogle Scholar
  23. Vaclavovic P, Dousa J (2016) G-Nut/Anubis: open-source tool for multi-GNSS data monitoring with a multipath detection for new signals, frequencies and constellations. Int Assoc Geodesy Symp 143:775–782. doi: 10.1007/1345_2015_97 CrossRefGoogle Scholar
  24. Vaclavovic P, Dousa J, Gyori G (2013) G-Nut software library—state of development and first results. Acta Geodyn Geomater 10(4):431–436. doi: 10.13168/AGG.2013.0042 CrossRefGoogle Scholar
  25. Vedel H, Mogensen KS, Huang XY (2001) Calculation of zenith delays from meteorological data comparison of NWP model, radiosonde and GPS delays. Phys Chem Earth (A) 26(6–8):497–502. doi: 10.1016/S1464-1895(01)00091-6 CrossRefGoogle Scholar
  26. Zumberge JF, Heflin MB, Jefferson DC, Watkins MM, Webb FH (1997) Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res 102:5005–5018CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Pavel Vaclavovic
    • 1
    Email author
  • Jan Dousa
    • 1
  • Michal Elias
    • 1
  • Jakub Kostelecky
    • 1
  1. 1.NTIS – New Technologies for the Information SocietyGeodetic Observatory Pecny, RIGTCZdibyCzech Republic

Personalised recommendations