GPS Solutions

, Volume 21, Issue 4, pp 1417–1425 | Cite as

Method for evaluating real-time GNSS satellite clock offset products

  • Yibin Yao
  • Yadong He
  • Wenting Yi
  • Weiwei Song
  • Cheng Cao
  • Ming Chen
Review Article


Real-time satellite clock offset products are frequently utilized in navigation and positioning service fields. The precision of such products is a key issue for their application. The evaluation methods existed for satellite clock offset products are mostly based on post-processed satellite clock offset solutions, which will encounter problems in real-time product evaluation, especially for real-time satellite clock offset products estimated from data with regional stations only. We propose an improved evaluation method for global navigation satellite system (GNSS) satellite clock offset products. In the proposed method, we use all-satellite reference method instead of single-satellite reference method to eliminate the timescale in satellite clock offset products. Moreover, a preprocessing step is suggested to detect gross errors and initial clock bias before evaluating the precision of the satellite clock offsets. We conduct two examples to verify our method, and the experimental results show that the proposed method is more reasonable in assessing the GNSS satellite clock offset precision, and it also provides a reliable approach to analyzing the estimated satellite clock offset in both real-time and post-processed, or globally and regionally.


Real-time Satellite clock offset Initial clock bias All-satellite reference Precision evaluation 



We are grateful to anonymous reviewers for their valuable comments and suggestions. The IGS is recognized for providing the post-processed clock products and also appreciate the National Administration of Surveying, Mapping and Geoinformation providing the real-time clock in China region. This study was supported by State Key Research and Development Program (2016YFB0501802) and by National Natural Science Foundation of China (Nos 41231174, 41574028 and 41404010) and by Open Research Fund of State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing (Grant No.15P01).


  1. Bock H, Jäggi A, Švehla D, Beutler G, Hugentobler U, Visser P (2007) Precise orbit determination for the GOCE satellite using GPS. Adv Space Res 39(10):1638–1647CrossRefGoogle Scholar
  2. Bock H, Dach R, Jäggi A, Beutler G (2009) High-rate GPS clock corrections from CODE: support of 1 Hz applications. J Geodesy 83(11):1083CrossRefGoogle Scholar
  3. Chen JP, Zhang YZ, Zhou XH, Pei X, Wang JX (2013) GNSS clock corrections densification at SHAO: from 5 min to 30 s. Sci China Phys Mech Astron 57(1):166–175CrossRefGoogle Scholar
  4. Chen L, Song W, Yi W, Shi C, Lou Y, Guo H (2016) Research on a method of real-time combination of precise GPS clock corrections. GPS Solut. doi: 10.1007/s10291-016-0515-3 Google Scholar
  5. Douša J (2010) The impact of errors in predicted GPS orbits on zenith troposphere delay estimation. GPS Solut 14(3):229–239CrossRefGoogle Scholar
  6. Dousa J, Vaclavovic P (2014) Real-time zenith tropospheric delays in support of numerical weather prediction applications. Adv Space Res 53(9):1347–1358CrossRefGoogle Scholar
  7. Ge M, Calais E, Haase J (2002) Sensitivity of zenith total delay accuracy to GPS orbit errors and implications for near-real-time GPS meteorology. J Geophys Res 107(D16):4315. doi: 10.1029/2001JD001095 CrossRefGoogle Scholar
  8. Ge M, Chen J, Gendt G (2009) EPOS-RT: software for real-time GNSS data processing. In: Geophysical research abstracts, vol 11. EGU2009-8933, EGU General Assembly 2009, ViennaGoogle Scholar
  9. Ge M, Chen J, Douša J, Gendt G, Wickert J (2012) A computationally efficient approach for estimating high-rate satellite clock offset corrections in realtime. GPS Solut 16(1):9–17CrossRefGoogle Scholar
  10. Hadas T, Bosy J (2015) IGS RTS precise orbits and clocks verification and quality degradation over time. GPS Solut 19(1):93–105CrossRefGoogle Scholar
  11. Han S, Kwon JH, Jekeli C (2001) Accurate absolute GPS positioning through satellite clock offset error estimation. J Geodesy 75(1):33–43CrossRefGoogle Scholar
  12. Lichten SM, Border JS (1987) Strategies for high-precision global positioning system orbit determination. J Geophys Res Solid Earth 92(B12):12751–12762CrossRefGoogle Scholar
  13. Lou Y, Shi C, Zhou X, Ye S (2009) Realization and analysis Of GPS precise clock products. Geomat Inf Sci Wuhan Univ 34(1):88–91Google Scholar
  14. Mervart L, Weber G (2011) Real-time combination of GNSS orbit and clock correction streams using a Kalman filter approach. In: Proceedings of ION GNSS 2011, Institute of Navigation, Portland, OR, USA, 20–23 Sep, pp 707–711Google Scholar
  15. Mervart L, Lukes Z, Rocken C, Iwabuchi T (2008) Precise point positioning with ambiguity resolution in real-time. In: Proceedings of ION GNSS 2008, Savannah, GA, 16–19 Sep, pp 397–405Google Scholar
  16. Pan S, Chen W, Jin X, Shi X, He F (2015) Real-time PPP based on the coupling estimation of clock bias and orbit error with broadcast ephemeris. Sensors 15(7):17808–17826CrossRefGoogle Scholar
  17. Shi J, Xu C, Li Y, Gao Y (2015) Impacts of real-time satellite clock offset errors on GPS precise point positioning-based troposphere zenith delay estimation. J Geodesy 89(8):747–756CrossRefGoogle Scholar
  18. Shi J, Yuan X, Cai Y, Wang G (2016) GPS real-time precise point positioning for aerial triangulation. GPS Solut. doi: 10.1007/s10291-016-0532-2 Google Scholar
  19. Song W, Yi W, Lou Y, Shi C, Yao Y, Liu Y, Mao Y, Xiang Y (2014) Impact of GLONASS pseudorange inter-channel biases on satellite clock offset corrections. GPS Solut 18(3):323–333CrossRefGoogle Scholar
  20. Wright TJ, Houlie N, Hildyard M, Iwabuchi T (2012) Real-time, reliable magnitudes for large earthquakes from 1 Hz GPS precise point positioning: the 2011 Tohoku-Oki (Japan) earthquake. Geophys Res Lett 39:L12302. doi: 10.1029/2012GL051894 CrossRefGoogle Scholar
  21. Yang Y (1999) Robust estimation of geodetic datum transformation. J Geodesy 73(5):268–274CrossRefGoogle Scholar
  22. Yuan Y, Zhang K, Rohm W, Choy S, Norman R, Wang CS (2014) Real-time retrieval of precipitable water vapor from GPS precise point positioning. J Geophys Res Atmos 119(16):10044–10057CrossRefGoogle Scholar
  23. Zhang Q, Moore P, Hanley J, Martin S (2007) Auto-BAHN: software for near real-time GPS orbit and clock computations. Adv Space Res 39(10):1531–1538CrossRefGoogle Scholar
  24. Zhang X, Li X, Guo F (2011) Satellite clock offset estimation at 1 Hz for realtime kinematic PPP applications. GPS Solut 15(4):315–324CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Yibin Yao
    • 1
  • Yadong He
    • 1
  • Wenting Yi
    • 2
    • 3
  • Weiwei Song
    • 2
    • 3
  • Cheng Cao
    • 3
  • Ming Chen
    • 4
  1. 1.School of Geodesy and GeomaticsWuhan UniversityWuhanChina
  2. 2.Collaborative Innovation Center of Geospatial TechnologyWuhan UniversityWuhanChina
  3. 3.GNSS Research CenterWuhan UniversityWuhanChina
  4. 4.National Geomatics Center of ChinaBeijingChina

Personalised recommendations