GPS Solutions

, Volume 21, Issue 3, pp 1315–1330 | Cite as

Low-cost, high-precision, single-frequency GPS–BDS RTK positioning

Original Article

Abstract

The integration of the Chinese BDS with other systems, such as the American GPS, makes precise RTK positioning possible with low-cost receivers. We investigate the performance of low-cost ublox receivers, which cost a few hundred USDs, while making use of L1 GPS + B1 BDS data in Dunedin, New Zealand. Comparisons will be made to L1 + L2 GPS and survey-grade receivers which cost several thousand USDs. The least-squares variance component estimation procedure is used to determine the code and phase variances and covariances of the receivers and thus formulate a realistic stochastic model. Otherwise, the ambiguity resolution and hence positioning performance would deteriorate. For the same reasons, the existence of receiver-induced time correlation is also investigated. The low-cost RTK performance is then evaluated by formal and empirical ambiguity success rates and positioning precisions. It will be shown that the code and phase precision of the low-cost receivers can be significantly improved by using survey-grade antennas, since they have better signal reception and multipath suppression abilities in comparison with low-cost patch antennas. It will also be demonstrated that the low-cost receivers can achieve competitive ambiguity resolution and positioning performance to survey-grade dual-frequency GPS receivers.

Keywords

Low-cost receiver Multi-GNSS Real-time kinematic (RTK) positioning Least-squares variance component estimation (LS-VCE) Time correlation 

References

  1. Amiri-Simkooei AR, Tiberius CCJM (2007) Assessing receiver noise using GPS short baseline time series. GPS Solut 11(1):21–35CrossRefGoogle Scholar
  2. Amiri-Simkooei AR, Teunissen PJG, Tiberius CCJM (2009) Application of least-squares variance component estimation to GPS observables. J Surv Eng 135(4):149–160CrossRefGoogle Scholar
  3. Amiri-Simkooei AR, Jazaeri S, Zangeneh-Nejad F, Asgari J (2016) Role of stochastic model on GPS integer ambiguity resolution success rate. GPS Solut 20(1):51–61CrossRefGoogle Scholar
  4. Axelrad P, Larson K, Jones B (2005) Use of the correct satellite repeat period to characterize and reduce site-specific multipath errors. In: Proceedings of the ION ITM 2005, Institute of Navigation, Long Beach, CA, September 13–16, pp 2638–2648Google Scholar
  5. Bona P (2000) Precision, cross correlation, and time correlation of GPS phase and code observations. GPS Solut 4(2):3–13CrossRefGoogle Scholar
  6. Bona P, Tiberius CCJM (2000) An experimental assessment of observation cross-correlation in dual frequency receivers. In: Proceedings of the ION GPS 2000, Institute of Navigation, Salt Lake City, UT, September 19–22, pp 792–798Google Scholar
  7. Euler HJ, Goad C (1991) On optimal filtering of GPS dual frequency observations without using orbit information. Bull Geod 65(2):130–143CrossRefGoogle Scholar
  8. He H, Li J, Yang Y, Xu J, Guo H, Wang A (2014) Performance assessment of single- and dual-frequency BeiDou/GPS single-epoch kinematic positioning. GPS Solut 18(3):393–403. doi:10.1007/s10291-013-0339-3 CrossRefGoogle Scholar
  9. Jiang Y, Yang S, Zhang G, Li G (2011) Coverage performance analysis on combined-GEO-IGSO satellite constellation. J Electron 28(2):228–234Google Scholar
  10. Li B (2016) Stochastic modeling of triple-frequency BeiDou signals: estimation, assessment and impact analysis. J Geod 90(7):593–610CrossRefGoogle Scholar
  11. Li B, Shen Y, Xu P (2008) Assessment of stochastic models for GPS measurements with different types of receivers. Chin Sci Bull 53(20):3219–3225Google Scholar
  12. Miller C, O’Keefe K, Gao Y (2012) Time correlation in GNSS positioning over short baselines. J Surv Eng 138(1):17–24CrossRefGoogle Scholar
  13. Mongredien C, Doyen JP, Strom M, Ammann D (2016) Centimeter-level positioning for UAVs and other mass-market applications. In: Proceedings of the ION GNSS 2016, Institute of Navigation, Portland, Oregon, September 12–16, pp 1441–1454Google Scholar
  14. Montenbruck O, Hauschild A, Steigenberger P, Hugentobler U, Teunissen PJG, Nakamura S (2013) Initial assessment of the COMPASS/BeiDou-2 regional navigation satellite system. GPS Solut 17(2):211–222. doi:10.1007/s10291-012-0272-x CrossRefGoogle Scholar
  15. Nadarajah N, Teunissen PJG, Raziq N (2013) BeiDou inter-satellite-type bias evaluation and calibration for mixed receiver attitude determination. Sensors 13(7):9435–9463CrossRefGoogle Scholar
  16. Odijk D, Teunissen PJG (2008) ADOP in closed form for a hierarchy of multi-frequency single-baseline GNSS models. J Geod 82:473–492CrossRefGoogle Scholar
  17. Odolinski R, Teunissen PJG (2016) Single-frequency, dual-GNSS versus dual-frequency, single-GNSS: a low-cost and high-grade receivers GPS–BDS RTK analysis. J Geod. doi:10.1007/s00190-016-0921-x Google Scholar
  18. Odolinski R, Teunissen PJG, Odijk D (2015) Combined BDS, Galileo, QZSS and GPS single-frequency RTK. GPS Solut 19(1):151–163. doi:10.1007/s10291-014-0376-6 CrossRefGoogle Scholar
  19. Pesyna KM, Heath R, Humphreys TE (2014) Centimeter positioning with a smartphone-quality GNSS antenna. In: Proceedings of the ION GNSS 2014, Institute of Navigation, Tampa, FL, September 8–12, pp 1568–1577Google Scholar
  20. Ray J, Cannon M (1999) Characterization of GPS carrier phase multipath. In: Proceedings of the ION NTM 1999, San Diego, CA, January 25–27, pp 343–352Google Scholar
  21. Schaffrin B, Bock Y (1988) A unified scheme for processing GPS dual-band phase observations. Bull Geod 62:142–160CrossRefGoogle Scholar
  22. Takasu T, Yasuda A (2008) Evaluation of RTK-GPS performance with low-cost single-frequency GPS receivers. In: International symposium on GPS/GNSS 2008, Odaiba, Tokyo, November 11–14, pp 852–861Google Scholar
  23. Takasu T, Yasuda A (2009) Development of the low-cost RTK-GPS receiver with an open source program package RTKLIB. In: International Symposium on GPS/GNSS 2009, Jeju, Korea, November 4–6, 1–6Google Scholar
  24. Teunissen PJG (1988) Towards a least-squares framework for adjusting and testing of both functional and stochastic model. Internal research memo Geodetic Computing Centre, Delft Reprint of original 1988 report (2004), No. 26Google Scholar
  25. Teunissen PJG (1990) An integrity and quality control procedure for use in multi sensor integration. In: Proceedings of the 3rd international technical meeting of the satellite division of the institute of navigation (ION GPS 1990), Colorado Spring, CO, pp 513–522, also published in: Volume VII of the GPS Red Book: Integrated systems, ION Navigation, 2012Google Scholar
  26. Teunissen PJG (1995) The least squares ambiguity decorrelation adjustment: a method for fast GPS integer estimation. J Geod 70(1):65–82CrossRefGoogle Scholar
  27. Teunissen PJG (1997) A canonical theory for short GPS baselines. Part I: the baseline precision, part II: the ambiguity precision and correlation, part III: the geometry of the ambiguity search space, part IV: precision versus reliability. J Geod 71(6):320–336, 71(7):389–401, 71(8):486–501, 71(9):513–525Google Scholar
  28. Teunissen PJG (1998) Success probability of integer GPS ambiguity rounding and bootstrapping. J Geod 72(10):606–612CrossRefGoogle Scholar
  29. Teunissen PJG (1999) An optimality property of the integer least-squares estimator. J Geod 73(11):587–593CrossRefGoogle Scholar
  30. Teunissen PJG, Amiri-Simkooei AR (2008) Least-squares variance component estimation. J Geod 82(2):65–82CrossRefGoogle Scholar
  31. Teunissen PJG, Tiberius CCJM, Jonkman JF, de Jong CD (1998) Consequences of the cross-correlation measurement technique. In: Proceedings of GNSS98, 2nd European symposium, Toulouse France, October 20–23, pp 1–6Google Scholar
  32. Teunissen PJG, Odolinski R, Odijk D (2014) Instantaneous BeiDou + GPS RTK positioning with high cut-off elevation angles. J Geod 88(4):335–350CrossRefGoogle Scholar
  33. Verhagen S (2005) On the reliability of integer ambiguity resolution. Navigation 52(2):99–110CrossRefGoogle Scholar
  34. Verhagen S, Teunissen PJG, Odijk D (2012) The future of single-frequency integer ambiguity resolution. In: Sneeuw N et al (ed) VII Hotine-Marussi symposium on mathematical geodesy, International Association of Geodesy Symposia 137, doi:10.1007/978-3-642-22078-4_5
  35. Wang G, de Jong K, Zhao Q, Hu Z, Guo J (2015a) Multipath analysis of code measurements for BeiDou geostationary satellites. GPS Solut 19(1):129–139. doi:10.1007/s10291-014-0374-8 CrossRefGoogle Scholar
  36. Wang M, Chai H, Liu J, Zeng A (2015b) BDS relative static positioning over long baseline improved by GEO multipath mitigation. Adv Space Res 57(3):782–793. doi:10.1016/j.asr.2015.11.032 CrossRefGoogle Scholar
  37. Wisniewski B, Bruniecki K, Moszynski M (2013) Evaluation of RTKLIB’s positioning accuracy using low-cost GNSS receiver and ASG-EUPOS. Int J Mar Navig Saf Sea Transp 7(1):79–85CrossRefGoogle Scholar
  38. Zaminpardaz S, Teunissen PJG, Nadarajah N (2016) GLONASS CDMA L3 ambiguity resolution and positioning. GPS Solut. doi:10.1007/s10291-016-0544-y Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.National School of SurveyingUniversity of OtagoDunedinNew Zealand
  2. 2.Department of Spatial Sciences, GNSS Research CentreCurtin UniversityPerthAustralia
  3. 3.Delft University of TechnologyDelftThe Netherlands

Personalised recommendations