Advertisement

GPS Solutions

, Volume 21, Issue 3, pp 1251–1263 | Cite as

Robust combination of IGS analysis center GLONASS clocks

  • Kangkang Chen
  • Tianhe XuEmail author
  • Yuanxi Yang
Original Article

Abstract

The International GNSS Service (IGS) Analysis Centers (ACs) generate precise GNSS products by integrating tracking data from globally distributed IGS stations. The ACs’ products are further processed and combined for the positioning, navigation and timing users. We propose a robust least squares estimation for combining GLONASS clock products. Besides the difference in clock reference, systematic errors exist in the clock differences between different ACs, which show a linear trend and are completely removed. The clock combinations utilizing the final, rapid and ultra-rapid products of the IGS ACs were implemented in this study. The results of clock validation show that the agreement and stability of the newly generated combination products are better than those of most ACs. Furthermore, the impact of the different clock combination products on precise point positioning (PPP) is analyzed. Compared to the results of PPP using the products generated by the traditional combination strategy, the repeatability of GLONASS static PPP using the new clock combinations is 2.31, 2.95, and 5.62 mm, an improvement by 26.7, 28.9 and 20.6% in N, E and U respectively. The average RMS of GLONASS kinematic PPP using the new clock combinations is 1.20, 1.47 and 3.01 cm, an improvement by 67.5, 71.9 and 70.3% in N, E and U respectively. The improvement of the proposed strategy on PPP results is significant.

Keywords

IGS GLONASS MGEX Clock combination Systematic error compensation Robust least square estimation Precise point positioning 

Notes

Acknowledgements

The continuing contribution of many individuals from many organizations around the world to maintaining the high quality of IGS products is gratefully acknowledged. The research was supported by National Natural Science Foundation of China (Grant Nos. 41574013, 41174008, 41374019) and National High-tech Research and Development Program of China (2016YFB0501700, 2016YFB0501701). The authors are grateful for the comments of reviewers, which helped to improve the manuscript significantly.

References

  1. Agrotis L, Caissy M, Ruelke A, Fisher S (2015) Real-time service technical report 2014. In: Dach R, Jean Y (eds), IGS 2014 technical reports, pp 171–178. IGS Central BureauGoogle Scholar
  2. Beutler G, Bock H, Dach R, Fridez P, Gäde A, Hugentobler U, Jäggi A, Meindl M, Mervart L, Prange L, Schaer S, Springer T, Urschl C, Walser P (2007) Bernese GPS software version 5.0. Astronomical Institute, University of Bern, Bern, Switzerland, Jan 2007, User manualGoogle Scholar
  3. Chen K (2014) Studies on the orbit/clock combination of IGS analysis centers and kinematic precise point positioning based on local GNSS network. Dissertation (in Chinese with English abstract), College of Geology Engineering and Geomatics, Chang’an University, Xi’an, ChinaGoogle Scholar
  4. Chen K, Xu T, Chen G, Li J, Yu S (2015) The orbit and clock combination of iGMAS analysis centers and the analysis of their precision. Proc China Satell Navig Conf (CSNC) 2:421–438Google Scholar
  5. Dach R, et al. (2015) CODE IGS analysis center technical report 2014. In: Dach R, Jean Y (eds), IGS 2014 technical reports, pp 21–34. IGS Central BureauGoogle Scholar
  6. Dow JM, Neilan RE, Rizos C (2009) The international GNSS service in a changing landscape of global navigation satellite systems. J Geodesy 83(3):191–198. doi: 10.1007/s00190-008-0300-3 CrossRefGoogle Scholar
  7. Ferland, R (1999) Densification of ITRF, reference frame working group report, 1998 IGS technical reports, Jet Propulsion Laboratory, Pasadena, California, pp. 219–222Google Scholar
  8. Ge M, Gendt G, Dick G, Zhang FP, Reigber C (2005) Impact of GPS satellite antenna offsets on scale changes in global network solutions. Geophys Res Lett 32:L06310. doi: 10.1029/2004GL022224 CrossRefGoogle Scholar
  9. Griffiths J, Choi K (2013) Analysis Center Coordinator. In: Dach R, Jean Y (eds), IGS 2012 technical reports, IGS Central Bureau, pp 21–34Google Scholar
  10. Guo J, Xu XL, Zhao QL, Liu JN (2015) Precise orbit determination for quad-constellation satellites at Wuhan University: strategy, result validation, and comparison. J Geodesy. doi: 10.1007/s00190-015-0862-9 Google Scholar
  11. Kouba J, Springer T (2001) New IGS station and satellite clock combination. GPS Solut 4(4):31–36. doi: 10.1007/PL00012863 CrossRefGoogle Scholar
  12. Kouba J, Mireault Y, Lahaye Y (1995) 1994 IGS orbit/clock combination and evaluation, appendix I of the analysis coordinator report, international GPS service for geodynamics (IGS) 1994 annual report, pp 70–94Google Scholar
  13. Lauknes TR, Zebker HA, Larsen Y (2010) InSAR deformation time series using an L1-norm small-baseline approach. Geosci Remote Sens, IEEE Trans. doi: 10.1109/TGRS.2010.2051951 Google Scholar
  14. Mervart L, Weber G (2011) Real-time combination of GNSS orbit and clock correction streams using a Kalman Filter approach. proceedings of ION GNSS 2011, Institute of Navigation, 20–23 Sept, Portland, OR, USA, pp 707–711Google Scholar
  15. Montenbruck O, Steigenberger P (2015) Multi–GNSS working group technical report 2014. In Dach R, Jean Y (eds), IGS 2014 technical reports. IGS Central Bureau, pp 21–34Google Scholar
  16. Neilan R, Fisher S, Walia G, Maggert D, Craddock A (2016) IGS Central Bureau technical report 2015. In Dach R, Jean Y (eds), IGS 2015 technical reports, IGS Central Bureau, pp 9–16Google Scholar
  17. Ou J (1996) A design of three-step robust solutions. Acta Geodaetica Cartogr Sin 25(3):173–179Google Scholar
  18. Qiu W (2003) Selecting weight iteration method with reliable initial values. Geomat Inf Sci Wuhan Univ 28(4):452–454Google Scholar
  19. Ray JR (1999) IGS/BIPM time transfer pilot project. GPS Solut 2(3):37–40. doi: 10.1007/PL00012755 CrossRefGoogle Scholar
  20. Schmid R, Rothacher M, Thaller D, Steigenberger P (2005) Absolute phase center corrections of satellite and receiver antennas. GPS Solut 9(4):283–293. doi: 10.1007/s10291-005-0134-x CrossRefGoogle Scholar
  21. Senior K, Koppang P, Matsakis D, Ray J (2003) Developing an IGS time scale. IEEE Trans Ultrason Ferroelectr Freq Control 50(6):211–218. doi: 10.1109/FREQ.2001.956188 CrossRefGoogle Scholar
  22. Slater JA, Weber R, Fragner D (2004) The IGS GLONASS Pilot Project–transitioning an experiment into an operational GNSS service. Proceedings of ION GNSS 2004, Institute of Navigation, 21–24 Sept, Long Beach, CA, USA, 1749–1757Google Scholar
  23. Springer TA, Zumberge JF, Kouba J (1998) The IGS Analysis Products and Consistency of the Combined Solutions, In: Dow JM, et al. (eds), Proceedings of 1998 AC Workshop (pp. 37–54). Darmstadt, Germany, 9–11 February 1998, European Space Centre of the European Space AgencyGoogle Scholar
  24. Steigenberger P, Hugentobler U, Loyer S, Perosanz F, Prange L, Dach R, Montenbruck O (2015) Galileo orbit and clock quality of the IGS multi-GNSS experiment. Adv Space Res 55(1):269–281. doi: 10.1016/j.asr.2014.06.030 CrossRefGoogle Scholar
  25. Teferle FN, Orliac EJ, Bingley RM (2007) An assessment of Bernese GPS software precise point positioning using IGS final products for global site velocities. GPS Solut 11(3):205–213. doi: 10.1007/s10291-006-0051-7 CrossRefGoogle Scholar
  26. Yang Y, Xu J (2016) GNSS receiver autonomous integrity monitoring (RAIM) algorithm based on robust estimation. Geodesy Geodyn 7(2):117–123CrossRefGoogle Scholar
  27. Yang Y, Cheng MK, Shum CK, Tapley BD (1999) Robust estimation of systematic errors of satellite laser range. J Geodesy 73(7):345–349. doi: 10.1007/s001900050252 CrossRefGoogle Scholar
  28. Zhou J, Huang Y, Yang Y, Ou J (1997) Robust least square method. Huazhong University Press, Wu HanGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.College of Geology Engineering and GeomaticsChang’an UniversityXi’anChina
  2. 2.Institute of Geodesy and PhotogrammetryETH ZurichZurichSwitzerland
  3. 3.Institute of Space ScienceShandong UniversityWeihaiChina
  4. 4.State Key Laboratory of Geo-information EngineeringXi’anChina
  5. 5.Xi’an Research Institute of Surveying and MappingXi’anChina

Personalised recommendations