GPS Solutions

, Volume 21, Issue 3, pp 1265–1274 | Cite as

Contributions of thermoelastic deformation to seasonal variations in GPS station position

  • Xueqing Xu
  • Danan Dong
  • Ming Fang
  • Yonghong Zhou
  • Na Wei
  • Feng Zhou
Original Article


We investigate surface displacements due to land temperature variation with the 2014 global thermoelastic model, which is a solution on a uniformly elastic sphere under the constraint that the geocenter remains stationary. In this research, the seasonal variations of global surface displacements are numerically simulated based on 0–10 cm underground land surface temperatures from National Oceanic and Atmospheric Administration. The displacements include vertical and horizontal components for the first time. Meanwhile, the annual contributions of geophysical sources, which are mainly due to atmosphere, ocean, snow and continental water, are also estimated. For comparative analyses, the partial displacement by annual mass-loading and the total displacement by the combined annual of thermoelasticity and mass-loading are calculated, respectively, and displayed against the annual displacements at stations of global positioning system network. Results of the numerical simulation show that the amplitude of surface thermoelastic deformation is at the millimeter level on the global scale, topped at about 3 mm for radial displacement and about 1.5 mm for transverse components, which need to be considered for the high-precision terrestrial reference frame. The combined deformation caused by thermoelastic and mass-loading can explain the seasonal GPS observations better than the mass-loading alone, in particular for the transverse displacements.


Terrestrial reference frame Thermoelastic deformation GPS position Mass-loading 



The research is supported by the NSFC Grant (11673049, 11371037, 11373057), and State Key Laboratory of Geodesy and Earth’s Dynamics Grant (SKLGED2016-5-1-EZ). We thank the National Oceanic and Atmospheric Administration (NOAA) for providing the global land surface temperature (LST) data, and the International GNSS Service (IGS) for providing the GPS observation data.


  1. Alterrman Z, Jarrosh H, Pekeris CL (1959) Oscillation of the earth. Proc R Soc Lond A 252:80–95CrossRefGoogle Scholar
  2. Ben-Zion Y, Leary P (1986) Thermoelastic strain in a half-space covered by unconsolidated material. Bull Seismol Soc Am 76(5):1447–1460Google Scholar
  3. Berger J (1975) A note on thermoelastic strains and tilts. J Geophys Res 80:274–277CrossRefGoogle Scholar
  4. Bettinelli P, Avouac JP, Flouzat M, Bollinger L, Ramillien G, Rajaure S, Sapkota S (2008) Seasonal variations of seismicity and geodetic strain in the Himalaya induced by surface hydrology. Earth Planet Sci Lett 266:332–344CrossRefGoogle Scholar
  5. Bevis M, Alsdorf D, Kendrick E, Fortes LP, Forsberg B, Smalley R, Becker J (2005) Seasonal fluctuations in the mass of the Amazon River system and Earth’s elastic response. Geophys Res Lett 32:L16308. doi: 10.1029/2005GL023491 CrossRefGoogle Scholar
  6. Biot MA (1956) Thermoelasticity and irreversible thermodynamics. J Appl Phys 27:240–253CrossRefGoogle Scholar
  7. Dong DN, Dickey JO, Chao Y, Cheng MK (1997) Geocenter variations caused by atmosphere, ocean and surface ground water. Geophys Res Lett 24(15):1867–1870CrossRefGoogle Scholar
  8. Dong DN, Fang P, Bock Y, Cheng MK, Miyazaki S (2002) Anatomy of apparent seasonal variations from GPS-derived site position time series. J Geophys Res 107(B4):2075CrossRefGoogle Scholar
  9. Fang M, Dong DN, Hager H (2014) Displacements due to surface temperature variation on a uniform elastic sphere with its centre of mass stationary. Geophys J Int 196:194–203CrossRefGoogle Scholar
  10. Flechtner F, Dobslaw H, Fagiolini E (2014) AOD1B product description document for product release 05.technical report: GRACE 327-750 (GR-GFZ-AOD-0001)Google Scholar
  11. Hatanaka Y, Sawada M, Horita A, Kusaka M, Johnson J, Rocken C (2001) Calibration of antenna-radome and monument-multipath effect of GEONET-Part 2: evaluation of the phase map by GEONET data. Earth Planets Sp 53:23–30CrossRefGoogle Scholar
  12. Hill EM, Davis JL, Elosegui P, Wernicke BP, Malikowski E, Niemi NA (2009) Characterization of site-specific GPS errors using a short-baseline network of braced monuments at Yucca Mountain, southern Nevada. J Geophys Res 114:B11402. doi: 10.1029/2008JB006027 CrossRefGoogle Scholar
  13. Longman IM (1962) A Green’s function for determining the deformation of the Earth under surface mass loads: 1 Theory. J Geophys Res 67:845–850CrossRefGoogle Scholar
  14. Penna NT, Stewart MP (2003) Aliased tidal signatures in continuous GPS height time series. Geophys Res Lett 30(23):2184. doi: 10.1029/2003GL018828 CrossRefGoogle Scholar
  15. Prawirodirdjo L, Ben-Zion Y, Bock Y (2006) Observation and modeling of thermoelastic strain in southern California Integrated GPS Network daily position time series. J Geophys Res 111:B02408CrossRefGoogle Scholar
  16. Ray J, van Dam T, Altamimi Z, Collilieux X (2006) Anomalous harmonics in the spectra of GPS position estimates. Eos Trans AGU 87(52): Fall Meet. Suppl, Abstract G43A-0985Google Scholar
  17. Ray J, Altamimi Z, Collilieux X, van Dam T (2008) Anomalous harmonics in the spectra of GPS position estimates. GPS Solut 12:55–64. doi: 10.1007/s10291-007-0067-7 CrossRefGoogle Scholar
  18. Ray J, Collilieux X, Rebischung P, van Dam T, Altamimi Z (2011) Consistency of crustal loading signals derived from models and GPS:inferences for GPS positioning errors. 2011 Fall Meeting, AGU: Abstract G51B-06Google Scholar
  19. Rodell M, Houser PR, Jambor U, Gottschalck J, Mitchell K, Meng J (2004) The global land data assimilation system. Bull Am Meteorol Soc 85:381–394CrossRefGoogle Scholar
  20. Sośnica K, Thaller D, Dach R, Jäggi A, Beutler G (2013) Impact of loading displacements on SLR-derived parameters and on the consistency between GNSS and SLR results. J Geod 87(8):751–769CrossRefGoogle Scholar
  21. Tan WJ, Dong DN, Chen JP, Wu B (2016) Analysis of systematic differences from GPS-measured and GRACE-modeled deformation in Central Valley, California. Adv Sp Res 57:19CrossRefGoogle Scholar
  22. Tesmer V, Steigenberger P, vanDam TM, Mayer-Gürr T (2011) Vertical deformations from homogeneously processed GRACE and global GPS long-term series. J Geod 85:291–310CrossRefGoogle Scholar
  23. Tregoning P, Watson C, Ramillien G, McQueen H, Zhang J (2009) Detecting hydrologic deformation using GRACE and GPS. Geophys Res Lett 36:L15401. doi: 10.1029/2009GL038718 CrossRefGoogle Scholar
  24. Tsai VC (2011) A model for seasonal changes in GPS positions and seismic wave speeds due to thermoelastic and hydrologic variations. J Geophys Res 116:B04404Google Scholar
  25. van Dam TM, Wahr JM (1987) Displacements of the Earth’s surface due to atmospheric loading: effects on gravity and baseline measurements. J Geophys Res 92:1281–1286CrossRefGoogle Scholar
  26. van Dam T, Wahr J, Lavallée D (2007) A comparison of annual vertical crustal displacements from GPS and gravity recovery and climate experiment (GRACE) over Europe. J Geophys Res 112(B3):B03404. doi: 10.1029/2006JB004335 Google Scholar
  27. Watson KM, Bock Y, Sandwell DT (2002) Satellite interferometric observations of displacements associated with seasonal groundwater in the Los Angeles basin. J Geophys Res 107:2074–2090. doi: 10.1029/2001JB000470 Google Scholar
  28. Wu X, Heflin MB, Ivins ER, Fukumori I (2006) Seasonal and interannual global surface mass variations from multisatellite geodetic data. J Geophys Res 111:B09401. doi: 10.1029/2005JB004100 Google Scholar
  29. Yan H, Chen W, Zhu YZ, Zhang WM, Zhong M (2009) Contributions of thermal expansion of monuments and nearby bedrock to observed GPS height changes. Geophys Res Lett 36:L13301. doi: 10.1029/2009GL038152 CrossRefGoogle Scholar
  30. Yan H, Chen W, Yuan LG (2016) Crustal vertical deformation response to different spatial scales of GRACE and GCMs surface loading. Geophys J Int 204:505–516CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Xueqing Xu
    • 1
    • 2
  • Danan Dong
    • 3
  • Ming Fang
    • 4
  • Yonghong Zhou
    • 1
    • 2
  • Na Wei
    • 5
  • Feng Zhou
    • 3
    • 6
  1. 1.Shanghai Astronomical ObservatoryChinese Academy of SciencesShanghaiChina
  2. 2.CAS Key Laboratory of Planetary SciencesShanghaiChina
  3. 3.East China Normal UniversityShanghaiChina
  4. 4.Department of Earth Atmospheric and Planetary SciencesMassachusetts Institute of TechnologyCambridgeUSA
  5. 5.School of Geodesy and GeomaticsWuhan UniversityWuhanChina
  6. 6.German Research Center for Geosciences (GFZ)TelegrafenbergGermany

Personalised recommendations