Skip to main content
Log in

An examination of the Galileo NeQuick model: comparison with GPS and JASON TEC

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

We evaluate the performance of Galileo broadcast NeQuick model by comparing it with GPS broadcast Klobuchar and the original NeQuick2 models. The broadcast coefficients of Galileo NeQuick model are computed from 23 globally distributed tracking stations of the International GNSS Service (IGS), by ingesting the Global Positioning System (GPS)-derived ionospheric total electron content (TEC) into the original NeQuick2 model. The accuracy of the three ionospheric models is evaluated over both the continental and oceanic regions for the year 2013. In continental regions, ionospheric TEC derived from 34 IGS stations is used as references for comparison. In oceanic regions, where the IGS stations are sparse, high-quality vertical TEC sources provided by JASON-1&2 altimeters are used as references. The evaluation results show that in continental regions, GPS broadcast Klobuchar and the original and broadcast NeQuick can mitigate the ionospheric delay by 56.8, 63.3 and 72.4 %, respectively. In oceanic regions, the three models can correct for 51.1, 61.2 and 68.6 % of the ionospheric delay. Galileo broadcast NeQuick model outperforms Klobuchar by 15.6 and 17.5 % over the continental and oceanic regions, respectively, for the test period. The broadcast NeQuick model can provide accurate ionospheric error corrections when Galileo begins full operational capability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Bidaine B, Warnant R (2010) Assessment of the NeQuick model at mid-latitudes using GNSS TEC and ionosonde data. Adv Space Res 45(9):1122–1128

    Article  Google Scholar 

  • Bidaine B, Warnant R (2011) Ionosphere modelling for Galileo single frequency users: illustration of the combination of the NeQuick model and GNSS data ingestion. Adv Space Res 47(2):312–322

    Article  Google Scholar 

  • Bidaine B, Lonchay M, Warnant R (2013) Galileo single frequency ionospheric correction: performances in terms of position. GPS Solut 17(1):63–73

    Article  Google Scholar 

  • Bilitza D, Reinisch BW (2008) International reference ionosphere 2007: improvements and new parameters. Adv Space Res 42(4):599–609

    Article  Google Scholar 

  • Brunini C, Azpilicueta F, Gende M, Camilion E, Ángel AA, Hernandez-Pajares M, Juan M, Sanz J, Salazar D (2011) Ground- and space-based GPS data ingestion into the NeQuick model. J Geod 85(12):931–939

    Article  Google Scholar 

  • Coisson P, Radicella S, Leitinger R, Nava B (2006) Topside electron density in IRI and NeQuick: features and limitations. Adv Space Res 37(5):937–942

    Article  Google Scholar 

  • Dach R, Brockmann E, Schaer S, Beutler G, Meindl M, Prange L, Bock H, Jäggi A, Ostini L (2009) GNSS processing at CODE: status report. J Geod 83(3–4):353–365

    Article  Google Scholar 

  • Di Giovanni G, Radicella S (1990) An analytical model of the electron density profile in the ionosphere. Adv Space Res 10(11):27–30

    Article  Google Scholar 

  • Dow JM, Neilan RE, Rizos C (2009) The International GNSS Service in a changing landscape of Global Navigation Satellite Systems. J Geod 83(3–4):191–198

    Article  Google Scholar 

  • Feltens J, Angling M, Jackson-Booth N, Jakowski N, Hoque M, Hernández-Pajares M, Aragón-Àngel A, Orús R, Zandbergen R (2011) Comparative testing of four ionospheric models driven with GPS measurements. Radio Sci. doi:10.1029/2010rs004584

    Google Scholar 

  • Hernández-Pajares M, Juan J, Sanz J (1999) New approaches in global ionospheric determination using ground GPS data. J Atmos Sol-terr Phys 61(16):1237–1247

    Article  Google Scholar 

  • Hernández-Pajares M, Juan JM, Sanz J, Orus R, Garcia-Rigo A, Feltens J, Komjathy A, Schaer SC, Krankowski A (2009) The IGS VTEC maps: a reliable source of ionospheric information since 1998. J Geod 83(3–4):263–275

    Article  Google Scholar 

  • Hernández-Pajares M, Juan JM, Sanz J, Aragón-Àngel À, García-Rigo A, Salazar D, Escudero M (2011) The ionosphere: effects, GPS modeling and the benefits for space geodetic techniques. J Geod 85(12):887–907

    Article  Google Scholar 

  • Hoque MM, Jakowski N (2015) An alternative ionospheric correction model for global navigation satellite systems. J Geod 89(4):391–406

    Article  Google Scholar 

  • Jodogne J-C, Nebdi H, Warnant R (2005) GPS TEC and ITEC from digisonde data compared with NeQuick model. Adv Radio Sci 2(11):269–273

    Article  Google Scholar 

  • Klobuchar JA (1987) Ionospheric time-delay algorithm for single-frequency GPS users. IEEE Trans Aero Electron Syst 23(3):325–331

    Article  Google Scholar 

  • Klobuchar JA (1991) Ionospheric effects on GPS. GPS World 2(4):48–51

    Google Scholar 

  • Komjathy A, Langley R, Bilitza D (1998) Ingesting GPS-derived TEC data into the International Reference Ionosphere for single frequency radar altimeter ionospheric delay corrections. Adv Space Res 22(6):793–801

    Article  Google Scholar 

  • Leitinger R, Zhang M, Radicella MS (2005) An improved bottomside for the ionospheric electron density model NeQuick. Ann Geophys 48(3):525–534

    Google Scholar 

  • Li Z, Yuan Y, Li H, Ou J, Huo X (2012) Two-step method for the determination of the differential code biases of COMPASS satellites. J Geod 86(11):1059–1076

    Article  Google Scholar 

  • Montenbruck O, Hauschild A, Steigenberger P (2014) Differential Code Bias Estimation using Multi-GNSS observations and Global Ionosphere Maps. Navigation 61(3):191–201

    Article  Google Scholar 

  • Nava B, Coïsson P, Miró Amarante G, Azpilicueta F, Radicella SM (2005) A model assisted ionospheric electron density reconstruction method based on vertical TEC data ingestion. Ann Geophys 48(2):321–326

    Google Scholar 

  • Nava B, Radicella SM, Leitinger R, Coïsson P (2006) A near-real-time model-assisted ionosphere electron density retrieval method. Radio Sci 41:RS6S16. doi:10.1029/2005rs003386

    Article  Google Scholar 

  • Nava B, Coïsson P, Radicella SM (2008) A new version of the NeQuick ionosphere electron density model. J Atmos Sol-terr Phys 70(15):1856–1862

    Article  Google Scholar 

  • Nava B, Radicella SM, Azpilicueta F (2011) Data ingestion into NeQuick 2. Radio Sci. 46:RS0D17. doi:10.1029/2010rs004635

    Article  Google Scholar 

  • Nigussie M, Radicella SM, Damtie B, Nava B, Yizengaw E, Ciraolo L (2012) TEC ingestion into NeQuick 2 to model the East African equatorial ionosphere. Radio Sci. 47:RS5002. doi:10.1029/2012rs004981

    Article  Google Scholar 

  • Oladipo OA, Schüler T (2012) GNSS single frequency ionospheric range delay corrections: NeQuick data ingestion technique. Adv Space Res 50(9):1204–1212

    Article  Google Scholar 

  • Orús R, Hernández-Pajares M, Juan J, Sanz J, García-Fernández M (2002) Performance of different TEC models to provide GPS ionospheric corrections. J Atmos Sol-terr Phys 64(18):2055–2062

    Article  Google Scholar 

  • OS-SIS-ICD (2010) European GNSS open service signal in space interface control document (OS-SIS-ICD, Issue 1.1). European Union, September, 2010

  • Prieto-Cerdeira R, Orus-Peres R, Breeuwer E, Lucas-Rodriguez R, Falcone M (2014) Performance of the Galileo single-frequency ionospheric correction during in-orbit validation. GPS World 25(6):53–58

    Google Scholar 

  • Radicella SM (2009) The NeQuick model genesis, uses and evolution. Ann Geophys 52(3/4):417–422

    Google Scholar 

  • Radicella SM, Zhang M-L (1995) The improved DGR analytical model of electron density height profile and total electron content in the ionosphere. Ann Geophys 38:35–41

    Google Scholar 

  • Radicella SM, Nava B, Coïsson P (2008) Ionospheric models for GNSS single frequency range delay corrections. Física de la Tierra 20:27–39

    Google Scholar 

  • Rawer K (1963) Propagation of decameter waves (h.f. band). In: Landmark B (ed) Meteorological and astronomical influences on radio wave propagation. Pergamon Press Inc., Oxford, pp 221–250

    Google Scholar 

  • Schaer S (1999) Mapping and predicting the earth’s ionosphere using the global positioning system. Doctoral dissertation, Univ. Bern, Switzerland

  • Somieski A, Burgi C, Favey E (2007) Evaluation and comparison of different methods of ionospheric delay mitigation for future Galileo mass market receivers. Proceedings of ION GNSS 2007. Institute of Navigation, Fort Worth, pp 2854–2860

    Google Scholar 

  • Wang N, Yuan Y, Li Z, Huo X (2016a) Improvement of Klobuchar model for GNSS single-frequency ionospheric delay corrections. Adv Space Res 57(7):1555–1569

    Article  Google Scholar 

  • Wang N, Yuan Y, Li Z, Montenbruck O, Tan B (2016b) Determination of differential code biases with multi-GNSS observations. J Geod 90(3):209–228

    Article  Google Scholar 

  • Wu X, Hu X, Wang G, Zhong H, Tang C (2013) Evaluation of COMPASS ionospheric model in GNSS positioning. Adv Space Res 51(6):959–968

    Article  Google Scholar 

  • Wu X, Zhou J, Tang B, Cao Y, Fan J (2014) Evaluation of COMPASS ionospheric grid. GPS Solut 18(4):639–649

    Article  Google Scholar 

  • Yuan Y, Huo X, Ou J, Zhang K, Yanju C, Debao W (2008) Refining the Klobuchar ionospheric coefficients based on GPS observations. IEEE Trans Aero Electron Syst 44(4):1498–1510

    Article  Google Scholar 

  • Zhang B, Teunissen PJ (2015) Characterization of multi-GNSS between-receiver differential code biases using zero and short baselines. Sci Bull 60(21):1840–1849

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the International GNSS Monitoring and Assessment System (iGMAS), the Crustal Dynamics Data Information System (CDDIS) of the International GNSS Services (IGS), the Centre National d’Etudes Spatiales (CNES) and the Center for Orbit Determination in Europe (CODE) for providing access to GPS and JASON observation data as well as global ionospheric map (GIM) products. We also would like to acknowledge the International Center for Theoretical Physics (ICTP) for providing the NeQuick2 sources. This research was supported by National 973 (No. 2012CB825604), China Natural Science Funds (No. 41231064, 41304034, 41574033 and 41321063), Beijing Natural Science Foundation (4144094) and the CAS/SAFEA International Partnership Program for Creative Research Teams (KZZD-EW-TZ-05).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ningbo Wang or Yunbin Yuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, N., Yuan, Y., Li, Z. et al. An examination of the Galileo NeQuick model: comparison with GPS and JASON TEC. GPS Solut 21, 605–615 (2017). https://doi.org/10.1007/s10291-016-0553-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10291-016-0553-x

Keywords

Navigation