Skip to main content


Log in

Long-term soil moisture dynamics derived from GNSS interferometric reflectometry: a case study for Sutherland, South Africa

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript


Soil moisture is a geophysical key observable for predicting floods and droughts, modeling weather and climate and optimizing agricultural management. Currently available in situ observations are limited to small sampling volumes and restricted number of sites, whereas measurements from satellites lack spatial resolution. Global navigation satellite system (GNSS) receivers can be used to estimate soil moisture time series at an intermediate scale of about 1000 m2. In this study, GNSS signal-to-noise ratio (SNR) data at the station Sutherland, South Africa, are used to estimate soil moisture variations during 2008–2014. The results capture the wetting and drying cycles in response to rainfall. The GNSS Volumetric Water Content (VWC) is highly correlated (r 2 = 0.8) with in situ observations by time-domain reflectometry sensors and is accurate to 0.05 m3/m3. The soil moisture estimates derived from the SNR of the L1 and L2P signals compared to the L2C show small differences with a RMSE of 0.03 m3/m3. A reduction in the SNR sampling rate from 1 to 30 s has very little impact on the accuracy of the soil moisture estimates (RMSE of the VWC difference 1–30 s is 0.01 m3/m3). The results show that the existing data of the global tracking network with continuous observations of the L1 and L2P signals with a 30-s sampling rate over the last two decades can provide valuable complementary soil moisture observations worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others


  • Alonso-Arroyo A, Camps A, Aguasca A, Forte GF, Monerris A, Rudiger C, Walker JP, Park H, Pascual D, Onrubia R (2014) Dual-polarization GNSS-R interference pattern technique for soil moisture mapping. IEEE J Sel Top Appl Earth Obs Remote Sens 7(5):1533–1544. doi:10.1109/JSTARS.2014.2320792

    Article  Google Scholar 

  • Beckmann P, Spizzichino A (1987) The scattering of electromagnetic waves from rough surfaces. Artech House Radar Library

  • Brocca L, Melone F, Moramarco T, Wagner W, Naeimi V, Bartalis Z, Hasenauer S (2010) Improving runoff prediction through the assimilation of the ascat soil moisture product. Hydrol Earth Syst Sci 14(10):1881–1893. doi:10.5194/hess-14-1881-2010

    Article  Google Scholar 

  • Chew CC, Small EE, Larson KM, Zavorotny VU (2013) Effects of near-surface soil moisture on gps snr data: development of a retrieval algorithm for soil moisture. IEEE Trans Geosci Remote Sens 52(1):537–543. doi:10.1109/TGRS.2013.2242332

    Article  Google Scholar 

  • Dorigo WA et al (2014) Evaluation of the ESA CCI soil moisture product using ground-based observations. Remote Sens Environ. doi:10.1016/j.rse.2014.07.023

    Google Scholar 

  • Drusch M (2007) Initializing numerical weather prediction models with satellite-derived surface soil moisture: data assimilation experiments with ECMWF’s integrated forecast system and the TMI soil moisture data set. J Geophys Res 112(D3):3102. doi:10.1029/2006JD007478

    Article  Google Scholar 

  • Egido A, Paloscia S, Motte E, Guerriero L, Pierdicca N, Caparrini M, Santi E, Fontanelli G, Floury N (2014) Airborne GNSS-R polarimetric measurements for soil moisture and above-ground biomass estimation. IEEE J Sel Topics Appl Earth Obs Remote Sens 7(5):1522–1532. doi:10.1109/JSTARS.2014.2322854

    Article  Google Scholar 

  • Entekhabi D, Njoku E, O’Neill P, Spencer M, Jackson T, Entin J, Im E, Kellogg K (2008) The soil moisture active/passive mission (SMAP). Geosci Remote Sens Symp IGARSS IEEE Int 98(5):704–716. doi:10.1109/JPROC.2010.2043918

    Google Scholar 

  • Fontana RD, Cheung W, Novak PM, Thomas A (2001) The new L2P civil signal. In: Proceedings of ION ITM GPS Institute of Navigation, September, Salt Lake City UT, pp 617–631

  • Gurtner W, Estey L (2007) RINEX: The receiver independent exchange format version 2.11.

  • Katzberg SJ, Torres O, Grant MS, Masters D (2005) Utilizing calibrated GPS reflected signals to estimate soil reflectivity and dielectric constant: results from SMEX02. Remote Sens Environ 100(1):17–28. doi:10.1016/j.rse.2005.09.015

    Article  Google Scholar 

  • Larson KM, Nievinski FG (2012) GPS snow sensing: results from the earthscope plate boundary observatory. GPS Solut 17(1):41–52. doi:10.1007/s10291-012-0259-7

    Article  Google Scholar 

  • Larson KM, Small EE, Gutmann E, Bilich A, Axelrad P, Braun J (2008) Using GPS multipath to measure soil moisture fluctuations: initial results. GPS Solut 12(3):173–177. doi:10.1007/s10291-007-0076-6

    Article  Google Scholar 

  • Larson KM, Braun JJ, Small EE, Zavorotny VU, Gutmann ED, Bilich AL (2010) GPS multipath and its relation to near-surface soil moisture content. IEEE J Sel Topics Appl Earth Obs Remote Sens 3(1):91–99. doi:10.1109/JSTARS.2009.2033612

    Article  Google Scholar 

  • Martin-Neira M (1993) A passive reflectometry and interferometry system (PARIS): application to ocean altimetry. ESA J 17(4):331–355

    Google Scholar 

  • Masters D, Axelrad P, Katzberg S (2002) Initial results of land-reflected GPS bistatic radar measurements in SMEX02. Remote Sens Environ 92(4):507–520. doi:10.1016/J.RSE.2004.05.016

    Article  Google Scholar 

  • Nievinski FG, Larson KM (2014) Forward modeling of multipath for near-surface reflectometry and positioning applications. GPS Solut 18(2):309–322. doi:10.1007/s10291-013-0331-y

    Article  Google Scholar 

  • Nolan M, Fatland DR (2003) Penetration depth as a DInSAR observable and proxy for soil moisture. IEEE Trans Geosci Remote Sens 41(3):532–537. doi:10.1109/TGRS.2003.809931

    Article  Google Scholar 

  • Perry MA, Niemann JD (2008) Generation of soil moisture patterns at the catchment scale by EOF interpolation. Hydrol Earth Syst Sci 12(1):39–53. doi:10.5194/hess-12-39-2008

    Article  Google Scholar 

  • Press WH, Rybicki GB (1989) Fast algorithm for spectral analysis of unevenly spaced data. Astrophys J 338:277–280. doi:10.1086/167197

    Article  Google Scholar 

  • Rodriguez-Alvarez N, Camps A, Valencia E, Hernandez JM, Perez I (2009) Soil moisture retrieval using GNSS-R techniques: experimental results over a bare soil field. IEEE Trans Geosci Remote Sens 47(11):3616–3624. doi:10.1109/TGRS.2009.2030672

    Article  Google Scholar 

  • Schaufler G, Kitzler B, Schindlbacher A, Skiba U, Sutton MA, Zechmeister-Boltenstern S (2010) Greenhouse gas emissions from European soils under different land use: effects of soil moisture and temperature. Eur J Soil Sci 61(5):683–696. doi:10.1111/j.1365-2389.2010.01277.x

    Article  Google Scholar 

  • Seneviratne SI, Corti T, Davin EL, Hirschi M, Jaeger EB, Lehner I, Orlowsky B, Teuling AJ (2010) Investigating soil moisture–climate interactions in a changing climate: a review. Earth-Sci Rev 99(3–4):125–161. doi:10.1016/j.earscirev.2010.02.004

    Article  Google Scholar 

  • Tabibi S, Nievinski FG, van Dam T, Monico JFG (2015) Assessment of modernized GPS L5 SNR for ground-based multipath reflectometry applications. Adv Space Res 55(4):1104–1116. doi:10.1016/j.asr.2014.11.019

    Article  Google Scholar 

  • Topp GC, Davis JL, Annan AP (1980) Electromagnetic determination of soil water content: measurements in coaxial transmission lines. Water Resour Res 16(3):574–582. doi:10.1029/WR016i003p00574

    Article  Google Scholar 

  • Vey S, Güntner A, Wickert J, Blume T, Ramatschi M (2015) Supplement to: long-term soil moisture dynamics derived from GNSS interferometric reflectometry: a case study for Sutherland, South Africa. GFZ German Research Center for Geosciences. doi:10.5880/GFZ.1.1.2015.001

  • Wanders N, Karssenberg D, de Roo A, de Jong SM, Bierkens MFP (2014) The suitability of remotely sensed soil moisture for improving operational flood forecasting. Hydrol Earth Syst Sci 18:2343–2357. doi:10.5194/hess-18-2343-2014

    Article  Google Scholar 

  • Wang L, Qu JJ (2009) Satellite remote sensing applications for surface soil moisture monitoring: a review. Front Earth Sci China 3(2):237–247. doi:10.1007/s11707-009-0023-7

    Article  Google Scholar 

  • Zavorotny VU, Masters D, Gasiewski A, Bartram B, Katzberg S, Axelrad P and Zamora R (2003) Seasonal polarimetric measurements of soil moisture using tower-based GPS bistatic radar. In: Proceedings of IEEE 2003 international geoscience and remote sensing symposium, IGARSS 2003, vol 2, pp 781–783. doi:10.1109/IGARSS.2003.1293916

Download references


We thank Kristine Larson for her helpful advice and discussions, Benjamin Creutzfeldt, Pieter Fourie and Jaci Cloete for their help in the field with sensor installation and maintenance, the South African Astronomic Observatory for their hospitality and support and acknowledge the Helmholtz Alliance HA310 “Remote Sensing of Earth System Dynamics” (HGF EDA) for funding the first author of this study. Reviewers are gratefully acknowledged for their comments.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Sibylle Vey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vey, S., Güntner, A., Wickert, J. et al. Long-term soil moisture dynamics derived from GNSS interferometric reflectometry: a case study for Sutherland, South Africa. GPS Solut 20, 641–654 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: