GPS Solutions

, Volume 20, Issue 3, pp 595–603

goGPS: open-source MATLAB software

  • Antonio M. Herrera
  • Hendy F. Suhandri
  • Eugenio Realini
  • Mirko Reguzzoni
  • M. Clara de Lacy
GPS Toolbox

Abstract

goGPS is a positioning software application designed to process single-frequency code and phase observations for absolute or relative positioning. Published under a free and open-source license, goGPS can process data collected by any receiver, but focuses on the treatment of observations by low-cost receivers. goGPS algorithms can produce epoch-by-epoch solutions by least squares adjustment, or multi-epoch solutions by Kalman filtering, which can be applied to either positions or observations. It is possible to aid the positioning by introducing additional constraints, either on the 3D trajectory such as a railway, or on a surface, e.g., a digital terrain model. goGPS is being developed by a collaboration of different research groups, and it can be downloaded from http://www.gogps-project.org. The version used in this manuscript can be also downloaded from the GPS Toolbox Web site http://www.ngs.noaa.gov/gps-toolbox. This software is continues to evolve, improving its functionalities according to the updates introduced by the collaborators. We describe the main modules of goGPS along with some examples to show the user how the software works.

Keywords

GNSS Open-source software Positioning Navigation 

References

  1. Colosimo G, Crespi M, Mazzoni A (2011) Real-time GPS seismology with a stand-alone receiver: a preliminary feasibility demonstration. J Geophys Res: Solid Earth (1978–2012), 116(B11)Google Scholar
  2. De Jonge P, Tiberius C (1996) The LAMBDA method for integer ambiguity estimation: implementation aspects. Publications of the Delft Computing Centre, LGR-Series (12)Google Scholar
  3. Herrera A, Caldera S, de Lacy MC, Realini E, Reguzzoni M (2012) An Analysis of the improvements introduced by EGNOS into the software goGPS for kinematic positioning using low cost receivers.7ª Asamblea Hispano-Portuguesa de Geodesia y Geofísica, pp. 5–7Google Scholar
  4. Hofmann-Wellenhof B, Lichtenegger H, Wasle E (2008) GNSS—global navigation satellite systems—GPS, GLONASS, Galileo, and more. SpringerGoogle Scholar
  5. Klobuchar JA (1987) Ionospheric time-delay algorithm for single-frequency GPS users. IEEE Trans Aerosp Electron Syst AES 23(3):325–331CrossRefGoogle Scholar
  6. Leick A, Rapoport L, Tatarnikov D (2015) GPS satellite surveying, 4th edn. New York, WileyGoogle Scholar
  7. Realini E (2009) goGPS free and constrained relative kinematic positioning with low cost receivers. Ph. D. thesis, http://www.researchgate.net/publication/237520116
  8. Realini E, Reguzzoni M (2013) goGPS: open source software for enhancing the accuracy of low-cost receivers by single-frequency relative kinematic positioning. Meas Sci Technol 24(11):115010CrossRefGoogle Scholar
  9. Realini E, Yoshida D, Reguzzoni M, Raghavan V (2012) Enhanced satellite positioning as a web service with goGPS open source software. Appl Geomat 4(2):135–142CrossRefGoogle Scholar
  10. Revnivykh S (2008) GLONASS status and progress. In: Proceeding 48th Meeting of the Civil GPS Service Interface Committee (CGSIC) 2008. Savannah, GA, USGoogle Scholar
  11. RTCA DO-229D (2006) Minimum Operational Performance Specification for Global Positioning System / Wide Area Augmentation System Airborne Equipment. Appendix A. Prepared by SC-159. December 13 2006Google Scholar
  12. Saastamoinen J (1973) Contribution to the theory of atmospheric refraction. Bull Géod 107(1):13–14CrossRefGoogle Scholar
  13. Suhandri HF, Realini E (2013) Issues of different estimation models for epoch-by-epoch double-difference GPS observation equations: a comparative study. In: Proceedings of European Navigation Conference (ENC) 2013, Vienna, AustriaGoogle Scholar
  14. Takasu T, Yasuda A (2008) Evaluation of RTK-GPS Performance with low-cost single-frequency GPS Receivers, presented at International Symposium on GPS/GNSS 2008, November 11–14. Tokyo, JapanGoogle Scholar
  15. Teunissen P (1995) The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation. J Geod 70(1–2):65–82CrossRefGoogle Scholar
  16. Teunissen P, Kleusberg A (1998) GPS for geodesy. Springer, BerlinCrossRefGoogle Scholar
  17. Traugott J, Dell’Omo G, Vyssotski AL, Odijk D, Sachs G (2008) A time-relative approach for precise positioning with a miniaturized L1 GPS logger. Proc ION GNSS 2008, Institute of Navigation, September 16–19, Savannah, GA, US, pp. 1883–1894Google Scholar
  18. Verhagen S, Li B (2012) LAMBDA—Matlab implementation, version 3.0. Delft University of Technology and Curtin UniversityGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Antonio M. Herrera
    • 1
  • Hendy F. Suhandri
    • 2
  • Eugenio Realini
    • 3
  • Mirko Reguzzoni
    • 4
  • M. Clara de Lacy
    • 1
    • 5
  1. 1.Departamento de Ingeniería Cartográfica, Geodesia y Fotogrametría, Escuela Politécnica SuperiorUniversidad de JaénJaénSpain
  2. 2.Institut für NavigationUniversität StuttgartStuttgartGermany
  3. 3.Geomatics Research and Development (GReD) srlMilanItaly
  4. 4.DICA, Politecnico di MilanoMilanItaly
  5. 5.Centro de Estudios Avanzados de Ciencias de la Tierra (CEACTierra)JaénSpain

Personalised recommendations